Formula	CP Physics - Student Formula Sheet Formula in Words		
$a^2 + b^2 = c^2$	(Pythagorean Theorem)		
Sine $\theta = \frac{Opposite}{Hypotenuse}$	$\sin \theta = \frac{O}{H}$		
Cosine $\theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$	$\cos \theta = \frac{A}{H}$		
Tangent $\theta = \frac{Opposite}{Adjacent}$	Tan $\theta = \frac{O}{A}$		
Sine ⁻¹ $\left(\frac{\text{Opposite}}{\text{Hypotenuse}}\right) = \theta$	$\operatorname{Sin}^{-1}\left(\frac{\mathrm{O}}{\mathrm{H}}\right) = \Theta$		
$Cosine^{-1}\left(\frac{Adjacent}{Hypotenuse}\right) = \Theta$	$\cos^{-1}\left(\frac{A}{H}\right) = \theta$		
$Tangent^{-1}\left(\frac{Opposite}{Adjacent}\right) = \Theta$	$\operatorname{Tan}^{-1}\left(\frac{O}{A}\right) = \Theta$		
$v = \frac{\Delta d}{t} = \frac{df - di}{t}$	Velocity = $\frac{\text{change in displacment}}{\text{time}}$ = $\frac{\text{Final Displacement-Initial Displacment}}{\text{time}}$		
$a = \frac{\Delta v}{t} = \frac{vf - vi}{t}$	Acceleration = $\frac{\text{change in velocity}}{\text{time}} = \frac{\text{Final Velocity} - \text{Initial Velocity}}{\text{time}}$		
$v = a \cdot t$	Instantaneous Velocity = Acceleration · Time		
$d = (v_i \cdot t) + (\mathscr{V}_2 \cdot a \cdot t^2)$	Displacement = (Initial Velocity \cdot Time) + ($\frac{1}{2}$ \cdot Acceleration \cdot Time ²)		
$v_f = v_i + a \cdot t$	Final Velocity = Initial Velocity + Acceleration \cdot Time		
$d = \frac{vi + vf}{2} \cdot t$	Displacement = $\frac{\text{Initial Velocity} + \text{Final Velocity}}{2}$ · Time		
$v_f^2 \text{=} v_i^2 \text{+} 2 \cdot \text{a} \cdot \text{d}$	Final Velocity ² = Initial Velocity ² + 2 · Acceleration · Displacement		
$a_c = v^2 / r$	Centripetal Acceleration = Velocity ² / Radius of Curve		
Free Fall: $v = g \cdot t$	Velocity of a Falling Object = Acceleration due to Gravity · Time		
$v_{f} = v_{i} - g \cdot t$	Final Velocity = Initial Velocity - Acceleration due to Gravity · Time		
$d = (v_{i} \cdot t) - (\mathscr{V}_2 \cdot g \cdot t^2)$	Displacement = (Initial Velocity \cdot Time) - ($\frac{1}{2}$ \cdot Acceleration due to Gravity \cdot Time ²)		
Hang Time: t _{up} = t _{down}	Time Spent Going Upwards = Time Spent Going Downwards		
$t_{total} = 2 \cdot t_{up}$	Total Time Spent Going Up and Down = 2 · Time Spent Going Upwards		
♠ _y = ♠ · sin (θ)	Y-Component of $\bigstar = \bigstar \cdot$ Sine (θ) Note: \bigstar is a placeholder for velocity, force, etc.		
▲ _x = ▲ · cos (θ)	X-Component of $\bigstar = \bigstar \cdot$ Cosine (θ) Note: \bigstar is a placeholder for velocity, force, etc.		
$F = m \cdot a$	Force = mass \cdot acceleration (Newton's 2 nd Law)		
$W_t = m \cdot g$	Weight of an Object (Force of Gravity) = mass · acceleration due to gravity		
$F_{N} = m \cdot g$	Normal Force = mass \cdot acceleration due to gravity (only true in CP Physics)		
$F_1 = F_2$	The Force on Object 1 = The Force on Object 2 (Newton's 3 rd Law)		
$m_1 \cdot a_1 = m_2 \cdot a_2$	Mass of Object 1 · Acceleration of Object 2 = Mass of Object 2 · Acceleration Object 2		

<u>Formula</u>	CP Physics - Student Formula Sheet <u>Formula in Words</u>		
$F_{f} = \mu \cdot F_{N}$	Force of Friction = Coefficient of Friction (Static or Kinetic) \cdot Normal Force		
$F = k \cdot \Delta x$	Force on a Spring = Spring Constant · Change in Spring Length (Hooke's Law)		
$W = F \cdot d$	Work = Force Applied · Displacement		
$PE = m \cdot g \cdot h$	Potential Energy = mass \cdot acceleration due to gravity \cdot height		
$KE = \mathscr{V}_2 \cdot m \cdot v^2$	Kinetic Energy = $\frac{1}{2} \cdot \text{mass} \cdot \text{velocity}^2$		
$P = \frac{W}{t}$	Power = $\frac{Work}{time}$ Note: You can use Work, PE, or KE in the numerator in this formula		
$p = m \cdot v$	Momentum = mass · velocity		
$I=F\cdot\Deltat$	Impulse = Force · Time Interval		
$I = m \cdot (v_f - v_i)$	Impulse = Change in Momentum [mass \cdot (final velocity – initial velocity)]		
$F\cdot\Delta t=m\cdot(v_f-v_i)$	Force \cdot Time Interval = mass \cdot (final velocity – initial velocity)		
$p_{initial} = p_{final}$	Momentum Before an Interaction = Momentum After an Interaction		
$p_{1i} + p_{2i} = p_{1f} + p_{2f}$	Momentum of Objects Before Interaction = Momentum of Objects After Interaction		
	$(m_{1i} \cdot v_{1i}) + (m_{2i} \cdot v_{2i}) = (m_{1i} \cdot v_{1i}) + (m_{2i} \cdot v_{2i})$ Formula for an Elastic Collision		
	$(m_{1i} \cdot v_{1i}) + (m_{2i} \cdot v_{2i}) = (m_1 + m_2) \cdot v_f$ Formula for an Inelastic Collision		

Quantity	Standard Unit (Abbreviation)	Standard Unit (Word)
Displacement / Distance	m	meter
Velocity / Speed	m/s	meters / second
Acceleration	m/s²	meters / second ²
Mass	kg	kilogram
Force	Ν	Newton
Weight	Ν	Newton
Coefficient of Friction (Static and Kinetic)	[unitless]	[unitless]
Spring Constant	N/m	Newtons / meter
Work	J	Joule
Potential Energy	J	Joule
Kinetic Energy	J	Joule
Power	W	Watt
Momentum	kg · m/s	kilogram · meter / second
Impulse	N·s	Newton \cdot seconds