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636 Chapter 9 Topics in Analytic Geometry

Conics
Conic sections were discovered during the classical Greek period, 600 to 300 B.C. The
early Greek studies were largely concerned with the geometric properties of conics. 
It was not until the early 17th century that the broad applicability of conics became
apparent and played a prominent role in the early development of calculus.

A conic section (or simply conic) is the intersection of a plane and a double-napped
cone. Notice in Figure 9.1 that in the formation of the four basic conics, the intersecting
plane does not pass through the vertex of the cone.

Circle Ellipse

Parabola Hyperbola
Figure 9.1 Basic Conics

When the plane does pass through the vertex, the resulting figure is a degenerate conic,
as shown in Figure 9.2.

Point Line Two intersecting lines
Figure 9.2 Degenerate Conics

There are several ways to approach the study of conics. You could begin by 
defining conics in terms of the intersections of planes and cones, as the Greeks did, or
you could define them algebraically, in terms of the general second-degree equation

However, you will study a third approach, in which each of the conics is defined as a
locus (collection) of points satisfying a certain geometric property. For example, the
definition of a circle as the collection of all points that are equidistant from a fixed
point leads to the standard equation of a circle

Equation of circle�x � h�2 � �y � k�2 � r2.

�h, k�
�x, y�

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0.

9.1 Circles and Parabolas

What you should learn
● Recognize a conic as the 

intersection of a plane and 

a double-napped cone.

● Write equations of circles in

standard form.

● Write equations of parabolas in

standard form.

● Use the reflective property of

parabolas to solve real-life 

problems.

Why you should learn it
Parabolas can be used to model 

and solve many types of real-life

problems. For instance, in Exercise

103 on page 645, a parabola is used

to design an entrance ramp for a

highway.

Edyta Pawlowska 2010/used under license from Shutterstock.com
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Section 9.1 Circles and Parabolas 637

Circles
The definition of a circle as a locus of points is a more general definition of a circle as
it applies to conics.

The Distance Formula can be used to obtain an equation of a circle whose center is
and whose radius is 

Distance Formula

Square each side.

Example 1 Finding the Standard Equation of a Circle

The point is on a circle whose center is at as shown in Figure 9.4.
Write the standard form of the equation of the circle.

Solution
The radius of the circle is the distance between and 

Use Distance Formula.

Simplify.

Radius

The equation of the circle with center and radius is

Standard form

Substitute for and 

Simplify.

Now try Exercise 9.

Be careful when you are finding and from the standard equation of a circle. For
instance, to find the correct and from the equation of the circle in Example 1, rewrite
the quantities and using subtraction.

k � �3�y � 3�2 � �y � ��3��2

h � �2�x � 2�2 � �x � ��2��2

�y � 3�2�x � 2�2

kh
kh

 �x � 2�2 � �y � 3�2 � 58.

r.h, k, �x � ��2��2 � �y � ��3��2 � ��58�2

 �x � h�2 � �y � k�2 � r2

r � �58�h, k� � ��2, �3�

 � �58

 � �32 � 72

 r � ��1 � ��2��2 � �4 � ��3��2

�1, 4�.��2, �3�

��2, �3�,�1, 4�

 �x � h�2 � �y � k�2 � r2

 ��x � h�2 � �y � k�2 � r

r.�h, k�

Definition of a Circle

A circle is the set of all points in a plane that are equidistant from a fixed 
point called the center of the circle. (See Figure 9.3.) The distance 
between the center and any point on the circle is the radius.�x, y�

r�h, k�,
�x, y�

Standard Form of the Equation of a Circle

The standard form of the equation of a circle is

The point is the center of the circle, and the positive number is the radius 
of the circle. The standard form of the equation of a circle whose center is the 
origin, is

x2 � y2 � r2.

�h, k� � �0, 0�,

r�h, k�

�x � h�2 � �y � k�2 � r2.

(1, 4)

(−2, −3) 

−2−4−6−8 2 4 6 8
−2

−4

−6

−8

−12

2

6

x 

y 

Figure 9.4

x 

y 

r 

(h, k)

(x, y)

Figure 9.3
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638 Chapter 9 Topics in Analytic Geometry

Example 2 Sketching a Circle

Sketch the circle given by the equation

and identify its center and radius.

Solution
Begin by writing the equation in standard form.

Write original equation.

Complete the squares.

Write in standard form.

In this form, you can see that the graph is a circle whose center is the point and
whose radius is Plot several points that are two units from the center. The
points and are convenient. Draw a circle that passes through
the four points, as shown in Figure 9.5.

Now try Exercise 29.

Example 3 Finding the Intercepts of a Circle

Find the and intercepts of the graph of the circle given by the equation

Solution
To find any intercepts, let To find any intercepts, let 

x-intercepts:

Substitute 0 for 

Simplify.

Take square root of each side.

Add 4 to each side.

y-intercepts:

Substitute 0 for 

Simplify.

Take square root of each side.

Add 2 to each side.

So the intercepts are and and the intercept is as
shown in Figure 9.6.

Figure 9.6

Now try Exercise 35.

−4

−4 14

8

(0, 2)

(4 +        , 0)3 2

(4 −        , 0)3 2 

(x − 4)2 + (y − 2)2 = 16

�0, 2�,y-�4 � 2�3, 0�,�4 � 2�3, 0�x-

 y � 2

 y � 2 � 0

 �y � 2�2 � 0

x. �0 � 4�2 � �y � 2�2 � 16

 x � 4 ± 2�3

 x � 4 � ±�12

 �x � 4�2 � 12

y. �x � 4�2 � �0 � 2�2 � 16

x � 0.y-y � 0.x-

�x � 4�2 � �y � 2�2 � 16.

y-x-

�3, �1��1, 1�,�3, 3�,�5, 1�,
r � �4 � 2.

�3, 1�

 �x � 3�2 � �y � 1�2 � 4

 �x2 � 6x � 9� � �y2 � 2y � 1� � �6 � 9 � 1

 x2 � 6x � y2 � 2y � 6 � 0

x2 � 6x � y2 � 2y � 6 � 0

Figure 9.5

Technology Tip
You can use a graphing
utility to confirm the
result in Example 2 by

graphing the upper and lower
portions in the same viewing 
window. First, solve for to
obtain

and

Then use a square setting, such as
and 

to graph both equations.
�2 � y � 4,�1 � x � 8

y2 � 1 � �4 � �x � 3�2.

y1 � 1 � �4 � �x � 3�2

y

Artbox 2010/used under license from Shutterstock.com
ARENA Creative 2010/used under license from Shutterstock.com
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Section 9.1 Circles and Parabolas 639

Parabolas
In Section 2.1, you learned that the graph of the quadratic function

is a parabola that opens upward or downward. The following 
definition of a parabola is more general in the sense that it is independent of the 
orientation of the parabola.

Note in Figure 9.7 that a parabola is symmetric with respect to its axis. Using the
definition of a parabola, you can derive the following standard form of the equation
of a parabola whose directrix is parallel to the axis or to the axis.y-x-

 f�x� � ax2 � bx � c

Definition of a Parabola

A parabola is the set of all points 
in a plane that are equidistant from a 
fixed line, the directrix, and a fixed 
point, the focus, not on the line. 
(See Figure 9.7.) The midpoint between 
the focus and the directrix is the vertex,
and the line passing through the focus 
and the vertex is the axis of the parabola.

�x, y�

Standard Equation of a Parabola (See the proof on page 707.)

The standard form of the equation of a parabola with vertex at is as 
follows.

Vertical axis; directrix:

Horizontal axis; directrix:

The focus lies on the axis units (directed distance) from the vertex. If the vertex 
is at the origin then the equation takes one of the following forms.

Vertical axis

Horizontal axis

See Figure 9.8.

y2 � 4px

x2 � 4py

�0, 0�,
p

x � h � p�y � k�2 � 4p�x � h�,  p � 0

y � k � p�x � h�2 � 4p�y � k�,  p � 0

�h, k�

(a) Vertical axis: (b) Vertical axis: (c) Horizontal axis: (d) Horizontal axis:
Figure 9.8

p < 0p > 0p < 0p > 0
�y � k�2 � 4p�x � h��y � k�2 � 4p�x � h��x � h�2 � 4p�y � k��x � h�2 � 4p�y � k�

p < 0

Directrix:
x = h − p

Axis:
y = k

Vertex: 
(h, k) 

Focus:
(h + p, k)

Focus:
(h + p, k)

x = h − p

Vertex: (h, k)

Axis: 
y = k

p > 0

Directrix:

Directrix: 
y = k − p 

p < 0
Vertex: 
(h, k) 

Focus: 
(h, k + p) 

x = h
Axis:

Focus:
(h, k + p)

Directrix:
y = k − p

Vertex:
(h, k)

p > 0

x = h
Axis:

F o cus 

Vertex

Directrix 

d2

d2

d1

d1

Axis 

x 

y

(x, y)

Figure 9.7

1111572836_0901.qxd  9/29/10  3:49 PM  Page 639

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



640 Chapter 9 Topics in Analytic Geometry

Example 4 Finding the Standard Equation of a Parabola

Find the standard form of the equation of the parabola with vertex at the origin and
focus 

Solution
The axis of the parabola is vertical, passing through and as shown in Figure
9.9. The standard form is where So, the equation is or

Now try Exercise 51.

Example 5 Finding the Focus of a Parabola

Find the focus of the parabola given by

Solution
To find the focus, convert to standard form by completing the square.

Write original equation.

Multiply each side by 

Add 1 to each side.

Complete the square.

Combine like terms.

Write in standard form.

Comparing this equation with

you can conclude that and Because is negative, the parabola
opens downward, as shown in Figure 9.10. Therefore, the focus of the parabola is

Focus

Now try Exercise 69.

Example 6 Finding the Standard Equation of a Parabola

Find the standard form of the equation of the parabola with vertex and focus 

Solution
Because the axis of the parabola is horizontal, passing through and consider
the equation

where and So, the standard form is

You can use a graphing utility to confirm this equation. To do this, let

and

as shown in Figure 9.11.

Now try Exercise 85.

y2 � ��4�x � 1�y1 � �4�x � 1�

y2 � 4�x � 1�.�y � 0�2 � 4�1��x � 1�

p � 2 � 1 � 1.h � 1, k � 0,

�y � k�2 � 4p�x � h�

�2, 0�,�1, 0�

�2, 0�.�1, 0�

�h, k � p� � ��1, 12�.

pp � � 1
2.h � �1, k � 1,

�x � h�2 � 4p� y � k�

 �2�y � 1� � �x � 1�2

 2 � 2y � x2 � 2x � 1

 1 � 1 � 2y � x2 � 2x � 1

 1 � 2y � x2 � 2x

�2. �2y � x2 � 2x � 1

 y � �1
2 x 2 � x �

1
2

y � �1
2 x 2 � x �

1
2.

y �
1
16 x2.

x2 � 16y,p � 4.x2 � 4py,
�0, 4�,�0, 0�

�0, 4�.

Vertex: (−1, 1)

Focus:   −1,   
−3 1

−1

2

1
2( (

y = −   x2 − x +1
2

1
2

Figure 9.10

Vertex: (0, 0) 

Focus: 
(0, 4) 

−9 9

−2

10

1
16

x2y =

Figure 9.9

Vertex: (1, 0) 

Focus: (2, 0) 
−1 5

−2

2

y2 = −    4(x − 1)

y1 =    4(x − 1)

Figure 9.11
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Section 9.1 Circles and Parabolas 641

Reflective Property of Parabolas
A line segment that passes through the focus of a parabola and has endpoints on the
parabola is called a focal chord. The specific focal chord perpendicular to the axis of
the parabola is called the latus rectum.

Parabolas occur in a wide variety of applications. For instance, a parabolic reflector
can be formed by revolving a parabola about its axis. The resulting surface has the 
property that all incoming rays parallel to the axis are reflected through the focus of 
the parabola. This is the principle behind the construction of the parabolic mirrors 
used in reflecting telescopes. Conversely, the light rays emanating from the focus 
of a parabolic reflector used in a flashlight are all parallel to one another, as shown in 
Figure 9.12.

Figure 9.12

A line is tangent to a parabola at a point on the parabola when the line intersects,
but does not cross, the parabola at the point. Tangent lines to parabolas have special
properties related to the use of parabolas in constructing reflective surfaces.

Figure 9.13

Tangent
line

Focus

P 

α 

α 

Axis

Parabolic reflector:
Light is reflected
in parallel rays.

Focus Axis

Light source
at focus

Reflective Property of a Parabola

The tangent line to a parabola at a point makes equal angles with the following 
two lines (see Figure 9.13).

1. The line passing through and the focus

2. The axis of the parabola

P

P
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642 Chapter 9 Topics in Analytic Geometry

Example 7 Finding the Tangent Line at a Point on a Parabola

Find the equation of the tangent line to the parabola given by at the point 

Solution
For this parabola, and the focus is as shown in Figure 9.14. You can find
the y-intercept of the tangent line by equating the lengths of the two sides of the
isosceles triangle shown in Figure 9.14:

and

Figure 9.14

Note that rather than The order of subtraction for the distance is
important because the distance must be positive. Setting produces

So, the slope of the tangent line is

and the equation of the tangent line in slope-intercept form is

Now try Exercise 93.

y � 2x � 1.

m �
1 � ��1�

1 � 0
� 2

 b � �1.

 
1

4
� b �

5

4

d1 � d2

b �
1
4.d1 �

1
4 � b

x 

(1, 1) 
0, 1 

4 

d1

d2

(0, b)

−1 1 

1

α 

α 

( )

y

y = x2

�
5
4

. d2 ���1 � 0�2 � �1 �
1

4�
2

d1 �
1

4
� b

�0, b�
�0, 14�,p �

1
4

�1, 1�.y � x2

Technology Tip
Try using a graphing utility to confirm the result of Example 7. By
graphing

and

in the same viewing window, you should be able to see that the line touches
the parabola at the point �1, 1�.

y2 � 2x � 1y1 � x2
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Section 9.1 Circles and Parabolas 643

Finding the Standard Equation of a Circle In Exercises
7–12, find the standard form of the equation of the 
circle with the given characteristics.

7. Center at origin; radius: 4

8. Center at origin; radius:

9. Center: point on circle:

10. Center: point on circle:

11. Center: diameter:

12. Center: diameter:

Identifying the Center and Radius of a Circle In
Exercises 13–18, identify the center and radius of the 
circle.

13. 14.

15.

16.

17. 18.

Writing the Equation of a Circle in Standard Form In
Exercises 19–26, write the equation of the circle in
standard form. Then identify its center and radius.

19. 20.

21. 22.

23.

24.

25.

26.

Sketching a Circle In Exercises 27–34, sketch the circle.
Identify its center and radius.

27. 28.

29.

30.

31.

32.

33. 34.

Finding the Intercepts of a Circle In Exercises 35–40,
find the and intercepts of the graph of the circle.

35.

36.

37.

38.

39.

40.

41. Seismology An earthquake was felt up to 52 miles
from its epicenter. You were located 40 miles west and
30 miles south of the epicenter. 

(a) Let the epicenter be at the point Find the
standard equation that describes the outer boundary
of the earthquake.

(b) Would you have felt the earthquake?

(c) Verify your answer to part (b) by graphing the 
equation of the outer boundary of the earthquake
and plotting your location. How far were you from
the outer boundary of the earthquake?

42. Landscape Design A landscaper has installed a circular
sprinkler that covers an area of 2000 square feet.

(a) Find the radius of the region covered by the sprinkler.
Round your answer to three decimal places.

(b) The landscaper increases the area covered to 
2500 square feet by increasing the water pressure.
How much longer is the radius?

�0, 0�.

�x � 7�2 � �y � 8�2 � 4

�x � 6�2 � �y � 3�2 � 16

x2 � 8x � y2 � 2y � 9 � 0

x2 � 2x � y2 � 6y � 27 � 0

�x � 5�2 � �y � 4�2 � 25

�x � 2�2 � �y � 3�2 � 9

y-x-

x2 � y2 � 10y � 9 � 0x2 � 2x � y2 � 35 � 0

x2 � 6x � y2 � 12y � 41 � 0

x2 � 14x � y2 � 8y � 40 � 0

x2 � 6x � y2 � 6y � 14 � 0

x2 � 4x � y2 � 4y � 1 � 0

y2 � 81 � x2x2 � 16 � y2

9x2 � 9y2 � 54x � 36y � 17 � 0

4x2 � 4y2 � 12x � 24y � 41 � 0

x2 � y2 � 10x � 6y � 25 � 0

x2 � y2 � 2x � 6y � 9 � 0

9
2x2 �

9
2y2 � 14

3x2 �
4
3y2 � 1

1
9x2 �

1
9y2 � 11

4x2 �
1
4y2 � 1

x2 � �y � 12�2 � 40�x � 1�2 � y2 � 15

�x � 9�2 � �y � 1�2 � 36

�x � 2�2 � �y � 7�2 � 16

x2 � y2 � 64x2 � y2 � 49

4�3�5, �6�;
2�7��3, �1�; 

��2, 4��6, �3�;
�1, 0��3, 7�;

4�2

Vocabulary and Concept Check
In Exercises 1–4, fill in the blank(s).

1. A _______ is the intersection of a plane and a double-napped cone.

2. A collection of points satisfying a geometric property can also be referred to as a
_______ of points.

3. A _______ is the set of all points in a plane that are equidistant from a
fixed point, called the _______ .

4. A _______ is the set of all points in a plane that are equidistant from a fixed
line, called the _______ , and a fixed point, called the _______ , not on the line.

5. What does the equation represent? What do and 
represent?

6. The tangent line to a parabola at a point makes equal angles with what two lines?

Procedures and Problem Solving

P

rh, k,�x � h�2 � �y � k�2 � r2

�x, y�

�x, y�

9.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.
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644 Chapter 9 Topics in Analytic Geometry

Matching an Equation with a Graph In Exercises 43–48,
match the equation with its graph. [The graphs are
labeled (a), (b), (c), (d), (e), and (f ).]

(a) (b)

(c) (d)

(e) (f )

43. 44.

45. 46.

47. 48.

Finding the Standard Equation of a Parabola In
Exercises 49–60, find the standard form of the equation
of the parabola with the given characteristic(s) and 
vertex at the origin.

49. 50.

51. Focus: 52. Focus:

53. Focus: 54. Focus:

55. Directrix: 56. Directrix:

57. Directrix: 58. Directrix:

59. Horizontal axis and passes through the point 

60. Vertical axis and passes through the point 

Finding the Vertex, Focus, and Directrix of a Parabola In
Exercises 61–78, find the vertex, focus, and directrix of
the parabola and sketch its graph. Use a graphing utility
to verify your graph.

61. 62.

63. 64.

65. 66.

67.

68.

69.

70.

71. 72.

73. 74.

75. 76.

77. 78.

Finding the Standard Equation of a Parabola In
Exercises 79–90, find the standard form of the equation
of the parabola with the given characteristics.

79. 80.

81. 82.

83. Vertex: focus:

84. Vertex: focus:

85. Vertex: focus:

86. Vertex: focus:

87. Vertex: directrix:

88. Vertex: directrix:

89. Focus: directrix:

90. Focus: directrix:

Determining the Point of Tangency In Exercises 91 and
92, the equations of a parabola and a tangent line to the
parabola are given. Use a graphing utility to graph both
in the same viewing window. Determine the coordinates
of the point of tangency.

Parabola Tangent Line

91.

92.

Finding the Tangent Line at a Point on a Parabola In
Exercises 93–96, find an equation of the tangent line to
the parabola at the given point and find the intercept
of the line.

93.

94.

95.

96. �2, �8�y � �2x2,

��1, �2�y � �2x2,

��3, 92�x2 � 2y,

�4, 8�x2 � 2y,

x-

x � y � 3 � 0x2 � 12y � 0

x � y � 2 � 0y2 � 8x � 0

y � 8�0, 0�;
x � �2�2, 2�;

x � 1��2, 1�;
y � 2�0, 4�;

��1, 0���1, 2�;
�3, 2��5, 2�;

�3, �9
4��3, �3�;

��3
2, 0���2, 0�;

−7 11

−5

7

(0, 0)
(3, −3)

−8 10

−6

6

(0, 4)
(−4, 0)

−7 8

−2

8

(4.5, 4) 

(5, 3) 

−3 9

−6

2

(3, 1) 

(4, 0) 

(2, 0) 

y2 � 4x � 4 � 0y2 � x � y � 0

x2 � 2x � 8y � 9 � 0x2 � 4x � 6y � 2 � 0

x �
1
4�y2 � 2y � 33�y �

1
4�x2 � 2x � 5�

�x �
1
2�2

� 4�y � 1��x �
3
2�2

� 4�y � 2�
y2 � 4y � 4x � 0

y2 � 6y � 8x � 25 � 0

�x � 5� � �y � 4�2 � 0

�x � 1�2 � 8�y � 2� � 0

x � y2 � 0x2 � 6y � 0

y2 � 3xy2 � �6x

y � �2x2y �
1
2x2

��3, �3�
�4, 6�

x � �3x � 2

y � �3y � 1

�0, �2���2, 0�
�5

2, 0��0,� 3
2�

−18 12

−10

10

(−2, 6)

−9 9

−3

9

(3, 6) 

�x � 3�2 � �2�y � 1��y � 1�2 � 4�x � 3�
y2 � �12xx2 � �8y

x2 � 2yy2 � �4x

−12 6

−6

6

−8 4

−4

4

−6 6

−6

2

−7 2

−4

2

−6 6

−2

6

−1 8

−2

4

1111572836_0901.qxd  9/29/10  3:49 PM  Page 644

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 9.1 Circles and Parabolas 645

97. Architectural Design A simply supported beam is
64 feet long and has a load at the center (see figure).
The deflection (bending) of the beam at its center is 
1 inch. The shape of the deflected beam is parabolic.

(a) Find an equation of the parabola. (Assume that 
the origin is at the center of the beam.)

(b) How far from the center of the beam is the 
deflection equal to inch?

98. Architectural Design Repeat Exercise 97 when the
length of the beam is 36 feet and the deflection of 
the beam at its center is 2 inches.

99. Mechanical Engineering The filament of an 
automobile headlight is at the focus of a parabolic
reflector, which sends light out in a straight beam (see
figure).

(a) The filament of the headlight is 1.5 inches from
the vertex. Find an equation for the cross section
of the reflector.

(b) The reflector is 8 inches wide. Find the depth of
the reflector.

100. Environmental Science Water is flowing from a
horizontal pipe 48 feet above the ground. The falling
stream of water has the shape of a parabola whose 
vertex is at the end of the pipe (see figure). The
stream of water strikes the ocean at the point

Find the equation of the path taken by the
water.

102. Transportation Design Roads are often designed
with parabolic surfaces to allow rain to drain off. A
particular road that is 32 feet wide is 0.4 foot higher in
the center than it is on the sides (see figure). 

(a) Find an equation of the parabola with its vertex at
the origin that models the road surface.

(b) How far from the center of the road is the road 
surface 0.1 foot lower than in the middle?

103. (p. 636) Road engineers
design a parabolic entrance ramp from a
straight street to an interstate highway (see
figure). Find an equation of the parabola.

x 
400 800 1200 1600

400

800

−400

−800 Street 
(1000, −800)

(1000, 800) 
Interstat e 

y 

32 ft 0.4 ft 
Not drawn to scale 

x

48 ft

40

30

20

10

10 20 30 40

y

�10�3, 0�.

�0, 48�

1.5 in. 

8 in. 

1
2

1 in. 

64 ft 

Not drawn to scale 

101. MODELING DATA
A cable of the Golden Gate Bridge is suspended (in the
shape of a parabola) between two towers that are 1280
meters apart. The top of each tower is 152 meters
above the roadway. The cable touches the roadway 
midway between the towers.

(a) Draw a sketch of the cable. Locate the origin of a
rectangular coordinate system at the center of the
roadway. Label the coordinates of the known points.

(b) Write an equation that models the cable.

(c) Complete the table by finding the height of the
suspension cable over the roadway at a distance of

meters from the center of the bridge.

x 0 200 400 500 600

y

x

y
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646 Chapter 9 Topics in Analytic Geometry

104. Astronomy A satellite in a 100-mile-high circular
orbit around Earth has a velocity of approximately
17,500 miles per hour. When this velocity is multiplied 
by the satellite has the minimum velocity 
necessary to escape Earth’s gravity, and follows a 
parabolic path with the center of Earth as the focus
(see figure).

(a) Find the escape velocity of the satellite.

(b) Find an equation of its path (assume the radius of
Earth is 4000 miles).

Projectile Motion In Exercises 105 and 106, consider
the path of a projectile projected horizontally with a
velocity of feet per second at a height of feet, where
the model for the path is

In this model (in which air resistance is disregarded),
is the height (in feet) of the projectile and is the 

horizontal distance (in feet) the projectile travels.

105. A ball is thrown from the top of a 100-foot tower with
a velocity of 28 feet per second.

(a) Find the equation of the parabolic path.

(b) How far does the ball travel horizontally before 
striking the ground?

106. A cargo plane is flying at an altitude of 30,000 feet and
a speed of 540 miles per hour. A supply crate is
dropped from the plane. How many feet will the crate
travel horizontally before it hits the ground?

Finding the Tangent Line at a Point on a Circle In
Exercises 107–110, find an equation of the tangent line to
the circle at the indicated point. Recall from geometry
that the tangent line to a circle is perpendicular to the
radius of the circle at the point of tangency.

Circle Point

107.

108.

109.

110.

Conclusions
True or False? In Exercises 111–117, determine whether
the statement is true or false. Justify your answer.

111. The equation represents a circle
with its center at the origin and a radius of 5.

112. The graph of the equation will have 
intercepts and intercepts 

113. A circle is a degenerate conic.

114. It is possible for a parabola to intersect its directrix.

115. The point which lies on the graph of a parabola closest
to its focus is the vertex of the parabola.

116. The directrix of the parabola intersects, or is
tangent to, the graph of the parabola at its vertex,

117. If the vertex and focus of a parabola are on a horizontal
line, then the directrix of the parabola is a vertical line.

119. Think About It The equation is a
degenerate conic. Sketch the graph of this equation
and identify the degenerate conic. Describe the 
intersection of the plane with the double-napped cone
for this particular conic.

Think About It In Exercises 120 and 121, change the
equation so that its graph matches the description.

120. upper half of parabola

121. lower half of parabola

Cumulative Mixed Review
Approximating Relative Minimum and Maximum 
Values In Exercises 122–125, use a graphing utility to
approximate any relative minimum or maximum values
of the function.

122. 123.

124. 125.  f�x� � x5 � 3x � 1 f�x� � x4 � 2x � 2

 f�x� � 2x2 � 3x f �x� � 3x3 � 4x � 2

�y � 1�2 � 2�x � 2�;
�y � 3�2 � 6�x � 1�;

x2 � y2 � 0

�0, 0�.
x2 � y

�0, ±r�.y-�±r, 0�x-
x2 � y2 � r2

x2 � �y � 5�2 � 25

��2�5, 2�x2 � y2 � 24

�2, �2�2�x2 � y2 � 12

��5, 12�x2 � y2 � 169

�3, �4�x2 � y2 � 25

xy

x2 � �
v2

16
	 y � s
.

sv

Parabolic
path

4100
miles

x 

y 

Not drawn to scale 

Circular
orbit

�2,

118. C A P S T O N E In parts (a)–(d), describe in words
how a plane could intersect with the double-napped
cone to form the conic section (see figure).

(a) Circle (b) Ellipse

(c) Parabola (d) Hyperbola
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Section 9.2 Ellipses 647

Introduction
The third type of conic is called an ellipse. It is defined as follows.

(a) (b)
Figure 9.15

The line through the foci intersects the ellipse at two points called vertices. The chord
joining the vertices is the major axis, and its midpoint is the center of the ellipse. The
chord perpendicular to the major axis at the center is the minor axis. [See Figure 9.15(b).]

You can visualize the definition of an ellipse by imagining two thumbtacks placed
at the foci, as shown in Figure 9.16. If the ends of a fixed length of string are fastened
to the thumbtacks and the string is drawn taut with a pencil, then the path traced by the
pencil will be an ellipse.

Figure 9.16 Figure 9.17

To derive the standard form of the equation of an ellipse, consider the ellipse in
Figure 9.17 with the following points.

Center: Vertices: Foci:

Note that the center is the midpoint of the segment joining the foci.
The sum of the distances from any point on the ellipse to the two foci is constant.

Using a vertex point, this constant sum is

Length of major axis

or simply the length of the major axis. 

�a � c� � �a � c� � 2a

�h ± c, k��h ± a, k��h, k�

b

a 

c 

(h, k)

(x, y)

2   b2 + c2 = 2a

b
2  +

 c
2 b 2 + c 2

b2 + c2 = a2

Major axis

Minor
axis

Center 
Vertex Vertex

d1 + d2 is constant.

Focus Focus

d2
d1

(x, y)

9.2 Ellipses

What you should learn
● Write equations of ellipses in

standard form.

● Use properties of ellipses to

model and solve real-life 

problems.

● Find eccentricities of ellipses.

Why you should learn it
Ellipses can be used to model 

and solve many types of real-life

problems. For instance, Exercise 58

on page 654 shows how the focal

properties of an ellipse are used by 

a lithotripter machine to break up

kidney stones.

Definition of an Ellipse

An ellipse is the set of all points in a plane, the sum of whose distances 
from two distinct fixed points (foci) is constant. [See Figure 9.15(a).]

�x, y�

Urologist
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648 Chapter 9 Topics in Analytic Geometry

Now, if you let be any point on the ellipse, then the sum of the distances
between and the two foci must also be That is,

which, after expanding and regrouping, reduces to

Finally, in Figure 9.17, you can see that

which implies that the equation of the ellipse is

You would obtain a similar equation in the derivation by starting with a vertical
major axis. Both results are summarized as follows.

Figure 9.18 shows both the vertical and horizontal orientations for an ellipse.

Major axis is horizontal. Major axis is vertical.
Figure 9.18

2a

2b

(h, k)

x 

y 

+ = 1
(x − h)2

b2
(y − k)2

a2
+ = 1

2a

2b
(h, k)

x 

(x − h)2

a2
(y − k)2

b2

y 

 
�x � h�2

a2
�

�y � k�2

b2
� 1.

 b2�x � h�2 � a2�y � k�2 � a2b2

b2 � a2 � c2

�a2 � c2��x � h�2 � a2�y � k�2 � a2�a2 � c2�.

��x � �h � c��2 � �y � k�2 � ��x � �h � c��2 � � y � k�2 � 2a

2a.�x, y�
�x, y�

Explore the Concept
On page 647, it was
noted that an ellipse
can be drawn using 

two thumbtacks, a string of
fixed length (greater than the
distance between the two
tacks), and a pencil. Try doing
this. Vary the length of the
string and the distance between
the thumbtacks. Explain how to
obtain ellipses that are almost
circular. Explain how to obtain
ellipses that are long and
narrow.

Standard Equation of an Ellipse

The standard form of the equation of an ellipse with center and major
and minor axes of lengths and respectively, where is

Major axis is horizontal.

Major axis is vertical.

The foci lie on the major axis, units from the center, with

If the center is at the origin then the equation takes one of the following
forms.

Major axis is horizontal.

Major axis is vertical.
x2

b2
�

y2

a2
� 1

x2

a2
�

y2

b2
� 1

�0, 0�,

c2 � a2 � b2.

c

�x � h�2

b2
�

�y � k�2

a2
� 1.

�x � h�2

a2
�

�y � k�2

b2
� 1

0 < b < a,2b,2a
�h, k�
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Section 9.2 Ellipses 649

Example 1 Finding the Standard Equation of an Ellipse

Find the standard form of the equation of the ellipse 
having foci at

and

and a major axis of length 6, as shown in Figure 9.19.

Solution
By the Midpoint Formula, the center of the ellipse is 

and the distance from the center to one of the 
foci is Because you know that 
Now, from you have

Because the major axis is horizontal, the standard equation is

Now try Exercise 31.

�x � 2�2

32
�

�y � 1�2

��5�2 � 1.

 b � �a2 � c2 � �9 � 4 � �5.

c2 � a2 � b2,
a � 3.2a � 6,c � 2.

�2, 1)

�4, 1��0, 1�

Example 2 Sketching an Ellipse

Sketch the ellipse given by

and identify the center and vertices.

4x2 � y2 � 36

Algebraic Solution

Write original equation.

Divide each side by 36.

Write in standard form.

The center of the ellipse is Because the denominator
of the -term is larger than the denominator of the -term,
you can conclude that the major axis is vertical. Moreover,
because the vertices are and Finally,
because the endpoints of the minor axis are 
and as shown in Figure 9.20.

Figure 9.20

Now try Exercise 37.

�3, 0�,
��3, 0�b � 3,

�0, 6�.�0, �6�a � 6,

x2y2
�0, 0�.

 
x2

32 �
y2

62 � 1

 
4x2

36
�

y2

36
�

36
36

 4x2 � y2 � 36

Graphical Solution
Solve the equation of the ellipse for as follows.

Then use a graphing utility to graph

and

in the same viewing window, as shown in Figure 9.21. Be sure
to use a square setting.

Figure 9.21

−8

−12 12

8

y2 = − 36 − 4x2

y1 = 36 − 4x2

The center of the
ellipse is (0, 0) and the
major axis is vertical.
The vertices are (0, 6)
and (0, −6).

y2 � ��36 � 4x2

y1 � �36 � 4x2

 y � ±�36 � 4x2

 y2 � 36 � 4x2

 4x2 � y2 � 36

y

(0, 1) (2, 1) 

(4, 1) 

a = 3

b = 5 

−3 6

−2

4

Figure 9.19
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650 Chapter 9 Topics in Analytic Geometry

Example 3 Graphing an Ellipse

Graph the ellipse given by 

Solution
Begin by writing the original equation in standard form. In the third step, note that 9
and 4 are added to both sides of the equation when completing the squares.

Write original equation.

Complete the square.

Write in standard form.

Now you see that the center is Because the denominator of the term
is the endpoints of the major axis lie two units to the right and left of the 
center. Similarly, because the denominator of the term is the endpoints of the
minor axis lie one unit up and down from the center. The graph of this ellipse is shown
in Figure 9.22.

Now try Exercise 41.

Example 4 Analyzing an Ellipse

Find the center, vertices, and foci of the ellipse 

Solution
By completing the square, you can write the original equation in standard form.

Write original equation.

Complete the square.

Write in standard form.

So, the major axis is vertical, where and 

Therefore, you have the following.

Center:

Vertices:

Foci:

The graph of the ellipse is shown in Figure 9.23.

Now try Exercise 43.

�1, �2 � 2�3 �
�1, �2 � 2�3 �

�1, 2�

�1, �6�

�1, �2�

c � �a2 � b2 � �16 � 4 � �12 � 2�3.

h � 1, k � �2, a � 4, b � 2,

 
�x � 1�2

22
�

�y � 2�2

42
� 1

Write in completed
square form.

 4�x � 1�2 � �y � 2�2 � 16

 4�x2 � 2x � 1� � �y2 � 4y � 4� � 8 � 4�1� � 4

Group terms and factor
4 out of x-terms.

 4�x2 � 2x � �� � �y2 � 4y � �� � 8

 4x2 � y2 � 8x � 4y � 8 � 0

4x2 � y 2 � 8x � 4y � 8 � 0.

b2 � 12,y-
a2 � 22,

x-�h, k� � ��3, 1�.

 
�x � 3�2

22
�

�y � 1�2

12
� 1

Write in completed
square form.

 �x � 3�2 � 4�y � 1�2 � 4

 �x2 � 6x � 9� � 4�y2 � 2y � 1� � �9 � 9 � 4�1�

Group terms and factor
4 out of y-terms.

 �x2 � 6x � �� � 4�y2 � 2y � �� � �9

 x2 � 4y 2 � 6x � 8y � 9 � 0

x2 � 4y2 � 6x � 8y � 9 � 0.

(−3, 2)

(−3, 1)

(−3, 0)

(−5, 1) (−1, 1)

−6 0

−1

3

(x + 3)2

22
(y − 1)2

12
+               = 1

Figure 9.22

V ert e x 
F ocu s 
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9−6
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−7

+ = 1
(x − 1)2

22
(y + 2)2
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Figure 9.23
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Section 9.2 Ellipses 651

Application
Ellipses have many practical and aesthetic uses. For instance, machine gears,
supporting arches, and acoustic designs often involve elliptical shapes. The orbits of
satellites and planets are also ellipses. Example 5 investigates the elliptical orbit of the
moon about Earth.

Example 5 An Application Involving an Elliptical Orbit

The moon travels about Earth in an elliptical orbit with Earth at one focus, as shown in
Figure 9.24. The major and minor axes of the orbit have lengths of 768,800 kilometers
and 767,640 kilometers, respectively. Find the greatest and least distances (the apogee
and perigee) from Earth’s center to the moon’s center. Then graph the orbit of the moon
on a graphing utility.

Figure 9.24

Solution
Because and you have 

and

which implies that

So, the greatest distance between the center of Earth and the center of the moon is

kilometers

and the least distance is

kilometers.

To graph the orbit of the moon on a graphing utility, first let and
in the standard form of an equation of an ellipse centered at the origin, and

then solve for 

Graph the upper and lower portions in the same viewing window, as shown in Figure 9.25.

Now try Exercise 59.

 y � ±383,820�1 �
x2

384,4002

x2

384,4002 �
y2

383,8202 � 1

y.
b � 383,820

a � 384,400

 � 363,292

 a � c � 384,400 � 21,108

 � 405,508

 a � c � 384,400 � 21,108

 � 21,108.

 ��384,4002 � 383,8202

 c ��a2 � b2

b � 383,820a � 384,400

2b � 767,640,2a � 768,800

Perigee 

Moon 

Apogee 

Eart h 
768,800 

km 

767,640 
km 

Study Tip
Note in Example 5 and
Figure 9.24 that Earth
is not the center of the 

moon’s orbit.

Astronaut

−600,000

−400,000

600,000

400,000

Figure 9.25
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652 Chapter 9 Topics in Analytic Geometry

Eccentricity
One of the reasons it was difficult for early astronomers to detect that the orbits of the
planets are ellipses is that the foci of the planetary orbits are relatively close to their 
centers, and so the orbits are nearly circular. To measure the ovalness of an ellipse, you
can use the concept of eccentricity.

Note that for every ellipse.
To see how this ratio is used to describe the shape of an ellipse, note that because

the foci of an ellipse are located along the major axis between the vertices and the 
center, it follows that 

For an ellipse that is nearly circular, the foci are close to the center and the ratio is
close to 0 [see Figure 9.26(a)]. On the other hand, for an elongated ellipse, the foci are
close to the vertices and the ratio is close to 1 [see Figure 9.26(b)].

(a) (b)
Figure 9.26

The orbit of the moon has an eccentricity of

Eccentricity of the moon

and the eccentricities of the eight planetary orbits are as follows.

e � 0.0549

Foci 

c 
x 

y

e is close to 1. e = 
c 
a 

a

Foci 

e is close to 0.

a

c 

e = 
c 
a 

x 

y

c�a

c�a

0 < c < a.

0 < e < 1

Definition of Eccentricity

The eccentricity of an ellipse is given by the ratio e �
c

a
.e

Planet Eccentricity, e

Mercury 0.2056
Venus 0.0068
Earth 0.0167
Mars 0.0934

Jupiter 0.0484
Saturn 0.0542
Uranus 0.0472
Neptune 0.0086

1111572836_0902.qxd  9/29/10  3:50 PM  Page 652

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 9.2 Ellipses 653

Identifying the Equation of an Ellipse In Exercises 9–12,
match the equation with its graph. [The graphs are
labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

9. 10.

11.

12.

Using the Standard Equation of an Ellipse In Exercises
13–18, find the center, vertices, foci, and eccentricity of
the ellipse, and sketch its graph. Use a graphing utility to
verify your graph.

13. 14.

15.

16.

17.

18.

An Ellipse Centered at the Origin In Exercises 19–26,
find the standard form of the equation of the ellipse with
the given characteristics and center at the origin.

19. 20.

21. Vertices: foci:

22. Vertices: foci:

23. Foci: major axis of length 14

24. Foci: major axis of length 10

25. Vertices: passes through the point 

26. Vertical major axis; passes through points and 

Finding the Standard Equation of an Ellipse In
Exercises 27–36, find the standard form of the equation
of the ellipse with the given characteristics.

27. 28.

−2 7

−4

2

(4, −1)

(2, 0) 

(0, −1)

(2, −2)−4 8

−1

7

(3, 3) 

(2, 6) (1, 3) 

(2, 0) 

�3, 0��0, 6�
�4, 2��0, ±5�;

�±2, 0�;
�±5, 0�;

�0, ±4��0, ±8�;
�±2, 0��±3, 0�;

−6 6

−4

4

0, − 
(2, 0) 

(−2, 0)

3 
2 ) ) 

0,  3 
2 ) ) 

−9 9

−6

6

(0, 4) 

(0, −4)

(2, 0) (−2, 0)

�x � 2�2 �
�y � 4�2

1
4

� 1

�x � 5�2

9
4

� �y � 1�2 � 1

�x � 3�2

12
�

�y � 2�2

16
� 1

�x � 4�2

16
�

�y � 1�2

25
� 1

x2

16
�

y2

81
� 1

x2

64
�

y2

9
� 1

�x � 2�2

9
�

�y � 2�2

4
� 1

�x � 2�2

16
� �y � 1�2 � 1

x2

9
�

y2

4
� 1

x2

4
�

y2

9
� 1

−10 5

−7

3

−6 6

−4

4

−6 6

−4

4

−4 8

−5

3

Vocabulary and Concept Check
In Exercises 1–4, fill in the blank(s).

1. An _______ is the set of all points in a plane, the sum of whose distances
from two distinct fixed points called ________ is constant.

2. The chord joining the vertices of an ellipse is called the _______ , and its midpoint
is the _______ of the ellipse.

3. The chord perpendicular to the major axis at the center of an ellipse is called the
_______ of the ellipse.

4. The eccentricity of an ellipse is given by the ratio ________.

In Exercises 5–8, consider the ellipse given by 

5. Is the major axis horizontal or vertical? 6. What is the length of the major axis?

7. What is the length of the minor axis? 8. Is the ellipse elongated or nearly circular?

Procedures and Problem Solving

x2

22 �
y2

82 � 1.

e �e

(x, y)

9.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.
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654 Chapter 9 Topics in Analytic Geometry

29. Vertices: minor axis of length 2

30. Foci: major axis of length 6

31. Foci: major axis of length 36

32. Center: vertex: minor axis of length 2

33. Vertices: minor axis of length 6

34. Center: foci:

35. Center: vertices:

36. Vertices: endpoints of the minor axis:

Using the Standard Equation of an Ellipse In Exercises
37–48, (a) find the standard form of the equation of the
ellipse, (b) find the center, vertices, foci, and eccentricity
of the ellipse, and (c) sketch the ellipse. Use a graphing
utility to verify your graph.

37. 38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Finding Eccentricity In Exercises 49–52, find the
eccentricity of the ellipse.

49. 50.

51.

52.

53. Using Eccentricity Find an equation of the ellipse
with vertices and eccentricity 

54. Using Eccentricity Find an equation of the ellipse

with vertices and eccentricity 

55. Using Eccentricity Find an equation of the ellipse
with foci and eccentricity 

56. Architecture Statuary Hall is an elliptical room in the
United States Capitol Building in Washington, D.C. The
room is also referred to as the Whispering Gallery
because a person standing at one focus of the room can
hear even a whisper spoken by a person standing at the
other focus. Given that the dimensions of Statuary Hall
are 46 feet wide by 97 feet long, find an equation for the
shape of the floor surface of the hall. Determine the 
distance between the foci.

57. Architecture A fireplace arch is to be constructed in
the shape of a semiellipse. The opening is to have a
height of 2 feet at the center and a width of 6 feet along
the base (see figure). The contractor draws the outline
of the ellipse on the wall by the method discussed on
page 647. Give the required positions of the tacks and
the length of the string.

58. (p. 647) A lithotripter
machine uses an elliptical reflector to break
up kidney stones nonsurgically. A spark plug
in the reflector generates energy waves at one
focus of an ellipse. The reflector directs these
waves toward the kidney stone positioned at
the other focus of the ellipse with enough
energy to break up the stone,as shown in the
figure. The lengths of the major and minor
axes of the ellipse are 280 millimeters and
160 millimeters, respectively. How far is the
spark from the kidney stone?

59. Astronomy Halley’s comet has an elliptical orbit with
the sun at one focus. The eccentricity of the orbit is
approximately 0.97. The length of the major axis of the
orbit is about 35.88 astronomical units. (An astronomical
unit is about 93 million miles.) Find the standard form
of the equation of the orbit. Place the center of the orbit
at the origin and place the major axis on the axis.

60. Geometry The area of the ellipse in the figure is
twice the area of the circle. How long is the major axis?
Hint: The area of an ellipse is given by 

x 

(0, 10 ) 

(0, −10)

(−a, 0) (a, 0)

y 

A � �ab.��

x-

Elliptical reflector

Kidney stone

Spark plug

1

−1 1 2 3−2−3
x 

y 

e �
4
5.�±3, 0�

e �
1
2.�0, ±8�

e �
3
5.�±5, 0�

4x2 � 3y2 � 8x � 18y � 19 � 0

x2 � 9y2 � 10x � 36y � 52 � 0

x2

25
�

y2

49
� 1

x2

4
�

y2

9
� 1

36x2 � 9y 2 � 48x � 36y � 43 � 0

12x2 � 20y 2 � 12x � 40y � 37 � 0

9x2 � 25y 2 � 36x � 50y � 61 � 0

16x2 � 25y 2 � 32x � 50y � 16 � 0

x2 � 4y2 � 6x � 20y � 2 � 0

6x2 � 2y2 � 18x � 10y � 2 � 0

9x2 � 4y2 � 54x � 40y � 37 � 0

9x2 � 4y2 � 36x � 24y � 36 � 0

4x2 � 49y2 � 196 � 0

49x2 � 4y2 � 196 � 0

16x2 � y2 � 16x2 � 9y2 � 36

�10, 6��0, 6�,
�5, 12�;�5, 0�,

��4, 4�, �4, 4��0, 4�; a � 2c;

�1, 2�, �5, 2��3, 2�; a � 3c;

�3, 1�, �3, 9�;
�2, 12�;�2, �1�;

�0, 0�, �0, 8�;
�0, 0�, �4, 0�;

�0, 2�, �8, 2�;
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Section 9.2 Ellipses 655

61. Aeronautics The first artificial satellite to orbit Earth
was Sputnik I (launched by the former Soviet Union 
in 1957). Its highest point above Earth’s surface was
947 kilometers, and its lowest point was 228 kilometers.
The center of Earth was a focus of the elliptical orbit,
and the radius of Earth is 6378 kilometers (see figure).
Find the eccentricity of the orbit.

62. Geometry A line segment through a focus with 
endpoints on an ellipse, perpendicular to the major axis,
is called a latus rectum of the ellipse. Therefore, an
ellipse has two latera recta. Knowing the length of the
latera recta is helpful in sketching an ellipse because this
information yields other points on the curve (see figure).
Show that the length of each latus rectum is 

Using Latera Recta In Exercises 63–66, sketch the
ellipse using the latera recta (see Exercise 62).

63. 64.

65.

66.

Conclusions
True or False? In Exercises 67 and 68, determine whether
the statement is true or false. Justify your answer.

67. It is easier to distinguish the graph of an ellipse from the
graph of a circle when the eccentricity of the ellipse is
large (close to 1).

68. The area of a circle with diameter is greater
than the area of an ellipse with major axis 

69. Think About It Consider the ellipse

Is this ellipse better described as elongated or nearly
circular? Explain your reasoning.

71. Think About It At the beginning of this section, it 
was noted that an ellipse can be drawn using two
thumbtacks, a string of fixed length (greater than the
distance between the two tacks), and a pencil (see
Figure 9.16). When the ends of the string are fastened at
the tacks and the string is drawn taut with a pencil, the
path traced by the pencil is an ellipse.

(a) What is the length of the string in terms of 

(b) Explain why the path is an ellipse.

72. Error Analysis Describe the error in finding the 
distance between the foci.

So, and the distance
between the foci is 20 inches.

73. Think About It Find the equation of an ellipse such
that for any point on the ellipse, the sum of the distances
from the points and is 36.

74. Proof Show that for the ellipse

where and the distance from the center of
the ellipse to a focus is 

Cumulative Mixed Review
Identifying a Sequence In Exercises 75–78, determine
whether the sequence is arithmetic, geometric, or neither.

75. 66, 55, 44, 33, 22, . . .

76. 80, 40, 20, 10, 5, . . .

77.

78.

Finding the Sum of a Finite Geometric Sequence In
Exercises 79 and 80, find the sum.

79. 80. 	
10

n�1
4
3

4�
n�1

	
6

n�0
3n

�
1
2, 12, 32, 52, 72, .  .  .

1
4, 12, 1, 2, 4, .  .  .

c.�0, 0�
b > 0,a > 0,

x2

a2 �
y2

b2 � 1

a2 � b2 � c2

�10, 2��2, 2�

c � 10

 � 100

 � 64 � 36

c2 � a2 � b2 12 in.

16 in.

a?

x2

328
�

y2

327
� 1.

2a � 8.
d � 2r � 8

5x2 � 3y 2 � 15

9x2 � 4y2 � 36

x2

9
�

y 2

16
� 1

x2

4
�

y2

1
� 1

F1 F2

Latera rect a 

x 

y 

2b2�a.

228 km 947 km 

F ocus 

70. C A P S T O N E Consider 
the ellipse shown.

(a) Identify the center,
vertices, and foci of 
the ellipse.

(b) Write the standard 
form of the equation 
of the ellipse.

(c) Find the eccentricity 
of the ellipse.

e 2 4 6 8 10

2

4

6

8

10

12

x

y
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656 Chapter 9 Topics in Analytic Geometry

Introduction
The definition of a hyperbola is similar to that of an ellipse. The difference is that 
for an ellipse, the sum of the distances between the foci and a point on the ellipse is 
constant; whereas for a hyperbola, the difference of the distances between the foci and
a point on the hyperbola is constant.

(a) (b)
Figure 9.27

The graph of a hyperbola has two disconnected parts called the branches.
The line through the two foci intersects the hyperbola at two points called the 
vertices. The line segment connecting the vertices is the transverse axis, and the 
midpoint of the transverse axis is the center of the hyperbola [see Figure 9.27(b)]. 
The development of the standard form of the equation of a hyperbola is similar 
to that of an ellipse. Note, however, that and are related differently for 
hyperbolas than for ellipses. For a hyperbola, the distance between the foci and 
the center is greater than the distance between the vertices and the center.

cb,a,

Transverse
axis

Vertex

Vertex

a
c 

Branch

Center

Branch
Focus

Focus

d2 − d1 is a positive constant.

d1

d2

(x, y)

9.3 Hyperbolas and Rotation of Conics

What you should learn
● Write equations of hyperbolas in

standard form.

● Find asymptotes of and graph

hyperbolas.

● Use properties of hyperbolas to

solve real-life problems.

● Classify conics from their general

equations.

● Rotate the coordinate axes 

to eliminate the -term in

equations of conics.

Why you should learn it
Hyperbolas can be used to model

and solve many types of real-life

problems. For instance, in Exercise

50 on page 666, hyperbolas are used

to locate the position of an explosion

that was recorded by three listening

stations.

xy

Definition of a Hyperbola

A hyperbola is the set of all points in a plane, the difference of whose 
distances from two distinct fixed points, the foci, is a positive constant. [See 
Figure 9.27(a).]

�x, y�

Standard Equation of a Hyperbola

The standard form of the equation of a hyperbola with center at 
is

Transverse axis is horizontal.

Transverse axis is vertical.

The vertices are units from the center, and the foci are units from the center. 
Moreover, If the center of the hyperbola is at the origin 
then the equation takes one of the following forms.

Transverse axis is horizontal.

Transverse axis is vertical.
y2

a2
�

x2

b2
� 1

x2

a2
�

y2

b2
� 1

�0, 0�,c2 � a2 � b2.
ca

� y � k�2

a2
�

�x � h�2

b2
� 1.

�x � h�2

a2
�

� y � k�2

b2
� 1

�h, k�
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Section 9.3 Hyperbolas and Rotation of Conics 657

Figure 9.28 shows both the horizontal and vertical orientations for a hyperbola.

Transverse axis is horizontal. Transverse axis is vertical.
Figure 9.28

Example 1 Finding the Standard Equation of a Hyperbola

Find the standard form of the equation of the hyperbola with foci and and
vertices and 

Solution
By the Midpoint Formula, the center of the hyperbola occurs at the point 
Furthermore, and and it follows that

So, the hyperbola has a horizontal transverse axis, and the standard form 
of the equation of the hyperbola is

This equation simplifies to

Figure 9.29 shows the hyperbola.

Figure 9.29

Now try Exercise 39.

(−1, 2)
(0, 2) (5, 2) 

(4, 2) 
−4 8

−2

6

(x − 2)2

22

(y − 2)2
−               = 1

(( 5 2

�x � 2�2

4
�

�y � 2�2

5
� 1.

�x � 2�2

22
�

�y � 2�2

��5�2
� 1.

 � �5.

 � �9 � 4

 � �32 � 22

 b � �c2 � a2

a � 2,c � 3
�2, 2�.

�4, 2�.�0, 2�
�5, 2���1, 2�

(h, k − c)

(h, k + c)

(h, k)
x 

y 

Transverse 
axis 

− = 1
(y − k)2

a2
(x − h)2

b2

(h + c, k)(h − c, k) (h, k)

Transverse 
axis 

x 

y 

− = 1
(x − h)2

a2
(y − k)2

b2

Technology Tip
You can use a graphing
utility to graph a 
hyperbola by graphing

the upper and lower portions 
in the same viewing window. 
To do this, you must solve the
equation for before entering 
it into the graphing utility.
When graphing equations of
conics, it can be difficult to
solve for which is why it 
is very important to know 
the algebra used to solve 
equations for y.

y,

y
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658 Chapter 9 Topics in Analytic Geometry

Asymptotes of a Hyperbola
Each hyperbola has two asymptotes that intersect at the center of the hyperbola. The
asymptotes pass through the corners of a rectangle of dimensions by with its 
center at as shown in Figure 9.30.

The conjugate axis of a hyperbola is the line segment of length joining 
and when the transverse axis is horizontal, and the line segment of length 
joining and when the transverse axis is vertical.�h � b, k��h � b, k�

2b�h, k � b�
�h, k � b�2b

�h, k�,
2b,2a

Asymptotes of a Hyperbola

Asymptotes for horizontal transverse axis

Asymptotes for vertical transverse axisy � k ±
a

b
�x � h�

y � k ±
b

a
�x � h�

Example 2 Sketching a Hyperbola

Sketch the hyperbola whose equation is

4x2 � y2 � 16.

Algebraic Solution

Write original equation.

Divide each side by 16.

Write in standard form.

Because the -term is positive, you can conclude that the transverse
axis is horizontal. So, the vertices occur at and the
endpoints of the conjugate axis occur at and and you can
sketch the rectangle shown in Figure 9.31. Finally, by drawing the
asymptotes

and

through the corners of this rectangle, you can complete the sketch, as
shown in Figure 9.32.

Figure 9.31 Figure 9.32

Now try Exercise 21.

y � �2xy � 2x

�0, 4�,�0, �4�
�2, 0�,��2, 0�

x2

 
x2

22
�

y 2

42
� 1

 
4x2

16
�

y 2

16
�

16

16

 4x2 � y 2 � 16

Graphical Solution
Solve the equation of the hyperbola for y, as follows.

Then use a graphing utility to graph

and

in the same viewing window, as shown in Figure
9.33. Be sure to use a square setting.

Figure 9.33

−6

−9 9

6

y2 = −    4x2 − 16

y1 =    4x2 − 16

From the graph, you
can see that the transverse
axis is horizontal and
the vertices are
(−2, 0) and (2, 0).

y2 � ��4x2 � 16y1 � �4x2 � 16

 ±�4x2 � 16 � y

 4x2 � 16 � y2

 4x2 � y 2 � 16

(h, k)

(h − a, k) (h + a, k)

(h, k + b)

(h, k − b)
Asymptote

Conjugate
axis

Asy
mpto

te

Figure 9.30
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Section 9.3 Hyperbolas and Rotation of Conics 659

Example 3 Finding the Asymptotes of a Hyperbola

Sketch the hyperbola given by

and find the equations of its asymptotes.

Solution

Write original equation.

Subtract 16 from each side and factor.

Complete the square.

Write in completed square form.

Write in standard form.

From this equation you can conclude that the hyperbola has a vertical transverse axis,
is centered at has vertices and and has a conjugate axis with
endpoints and To sketch the hyperbola, draw a rectangle
through these four points. The asymptotes are the lines passing through the corners 
of the rectangle, as shown in Figure 9.34. Finally, using and you can
conclude that the equations of the asymptotes are

and

Figure 9.34

You can verify your sketch using a graphing utility, as shown in Figure 9.35. Notice that
the graphing utility does not draw the asymptotes. When you trace along the branches,
however, you will see that the values of the hyperbola approach the asymptotes.

Figure 9.35

Now try Exercise 25.

−9

−6

9

6

y1 = 2      1 +
(x + 1)2

3

y2 = −2      1 +
(x + 1)2

3

y � �
2
�3

�x � 1�.y �
2
�3

�x � 1�

b � �3,a � 2

��1 � �3, 0�.��1 � �3, 0�
��1, �2�,��1, 2���1, 0�,

 
y2

22
�

�x � 1�2

��3�2 � 1

 4�x � 1�2 � 3y2 � �12

 4�x2 � 2x � 1� � 3y2 � �16 � 4�1�

 4�x2 � 2x� � 3y2 � �16

 4x2 � 3y 2 � 8x � 16 � 0

4x2 � 3y 2 � 8x � 16 � 0
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660 Chapter 9 Topics in Analytic Geometry

Example 4 Using Asymptotes to Find the Standard Equation

Find the standard form of the equation of the hyperbola having vertices and
and having asymptotes

and

as shown in Figure 9.36.

Figure 9.36

Solution
By the Midpoint Formula, the center of the hyperbola is Furthermore, the
hyperbola has a vertical transverse axis with From the original equations, you
can determine the slopes of the asymptotes to be

and

and because you can conclude that So, the standard form of the equation
of the hyperbola is

Now try Exercise 45.

As with ellipses, the eccentricity of a hyperbola is

Eccentricity

and because it follows that When the eccentricity is large, the branches of
the hyperbola are nearly flat, as shown in Figure 9.37(a). When the eccentricity is close
to 1, the branches of the hyperbola are more pointed, as shown in Figure 9.37(b).

(a) (b)
Figure 9.37

e =
c 
a 

e is close to 1. 

Vertex
Focus

a

c

x 

y 

e is large. 

Vertex Focus

e =
c 
a 

c

a 

x 

y 

e > 1.c > a

e �
c

a

� y � 2�2

32
�

�x � 3�2

�3

2�
2

� 1.

b �
3
2.a � 3,

m2 � �2 � �
a

b
m1 � 2 �

a

b

a � 3.
�3, �2�.

10−5

−7

(3, 1)

(3, −5)

3

y = −2x + 4 y = 2x − 8

y � �2x � 4y � 2x � 8

�3, 1�
�3, �5�
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Section 9.3 Hyperbolas and Rotation of Conics 661

Applications
The following application was developed during World War II. It shows how the 
properties of hyperbolas can be used in radar and other detection systems.

Example 5 An Application Involving Hyperbolas

Two microphones, 1 mile apart, record an explosion. Microphone A receives the sound
2 seconds before microphone B. Where did the explosion occur?

Solution
Assuming sound travels at 1100 feet per second,
you know that the explosion took place 2200 feet 
farther from B than from A, as shown in 
Figure 9.38. The locus of all points that are 
2200 feet closer to A than to B is one branch 
of the hyperbola

where

and

So, and you can conclude that the
explosion occurred somewhere on the right branch of the hyperbola

Now try Exercise 49.

Another interesting application of conic sections involves the orbits of comets in
our solar system. Of the 610 comets identified prior to 1970, 245 have elliptical orbits,
295 have parabolic orbits, and 70 have hyperbolic orbits. The center of the sun is a focus
of each of these orbits, and each orbit has a vertex at the point where the comet is 
closest to the sun, as shown in Figure 9.39. Undoubtedly, there are many comets with
parabolic or hyperbolic orbits that have not been identified. You get to see such comets
only once. Comets with elliptical orbits, such as Halley’s comet, are the only ones that
remain in our solar system.

If is the distance between the vertex and the focus in meters, and is the velocity
of the comet at the vertex in meters per second, then the type of orbit is determined as
follows.

1. Ellipse:

2. Parabola:

3. Hyperbola:

In each of the above, kilograms (the mass of the sun) and
cubic meter per kilogram-second squared (the universal gravitational

constant).
G � 6.67 � 10�11

M � 1.989 � 1030

v > �2GM�p

v � �2GM�p

v < �2GM�p

vp

x2

1,210,000
�

y2

5,759,600
� 1.

b2 � c2 � a2 � 26402 � 11002 � 5,759,600,

a �
2200

2
� 1100.

c �
5280

2
� 2640

x2

a2 �
y2

b2 � 1

2200 

2200

c − a c − a

2c = 5280
2200 + 2(c − a) = 5280

2000 

2000 

3000 

A 

B 
x 

y 

Figure 9.38

Sun 
p 

Elliptical orbit

Parabolic orbit

Vertex

Hyperbolic orbit

Figure 9.39
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662 Chapter 9 Topics in Analytic Geometry

General Equations of Conics

The test above is valid when the graph is a conic. The test does not apply to
equations such as

whose graphs are not conics.

Example 6 Classifying Conics from General Equations

Classify the graph of each equation.

a.

b.

c.

d.

Solution

a. For the equation you have

Parabola

So, the graph is a parabola.

b. For the equation you have

Hyperbola

So, the graph is a hyperbola.

c. For the equation you have

Ellipse

So, the graph is an ellipse.

d. For the equation you have

Circle

So, the graph is a circle.

Now try Exercise 55.

A � C � 2.

2x2 � 2y2 � 8x � 12y � 2 � 0,

AC � 2�4� > 0.

2x2 � 4y2 � 4x � 12y � 0,

AC � 4��1� < 0.

4x2 � y2 � 8x � 6y � 4 � 0,

AC � 4�0� � 0.

4x2 � 9x � y � 5 � 0,

2x2 � 2y2 � 8x � 12y � 2 � 0

2x2 � 4y2 � 4x � 12y � 0

4x2 � y2 � 8x � 6y � 4 � 0

4x2 � 9x � y � 5 � 0

x2 � y2 � �1

Classifying a Conic from Its General Equation

The graph of is one of the following.

1. Circle:

2. Parabola: or but not both.

3. Ellipse: and have like signs.

4. Hyperbola: and have unlike signs.CAAC < 0

CAAC > 0

C � 0,A � 0AC � 0

A � 0A � C

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

Study Tip
Notice in Example 6(a) that there is no -term in the equation.
Therefore, C � 0.

y2
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Section 9.3 Hyperbolas and Rotation of Conics 663

Rotation
You have learned that the equation of a conic with axes parallel to one of the 
coordinates axes has a standard form that can be written in the general form

Horizontal or vertical axis

You will now study the equations of conics whose axes are rotated so that they are not
parallel to either the axis or the axis. The general equation for such conics contains
an term.

Equation in plane

To eliminate this -term, you can use a procedure called rotation of axes. The objective
is to rotate the - and -axes until they are parallel to the axes of the conic. The rotated
axes are denoted as the -axis and the -axis, as shown in Figure 9.40.

Figure 9.40

After the rotation, the equation of the conic in the new -plane will have the form

Equation in -plane

Because this equation has no term, you can obtain a standard form by completing
the square. The following theorem identifies how much to rotate the axes to eliminate
the -term and also the equations for determining the new coefficients 
and 

Note that the substitutions

and

were developed to eliminate the -term in the rotated system. You can use this to
check your work. In other words, when your final equation contains an -term, you
know that you have made a mistake.

x�y�
x�y�

y � x� sin � � y� cos �x � x� cos � � y� sin �

F�.
E�,D�,C�,A�,xy

xy-

x�y�A��x��2 � C��y��2 � D�x� � E�y� � F� � 0.

x�y�

x 

x ′

y ′ 

θ 

y

y�x�
yx

xy

xy-Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

xy-
y-x-

Ax2 � Cy2 � Dx � Ey � F � 0.

Rotation of Axes to Eliminate an Term (See the proof on page 708.)

The general second-degree equation

can be rewritten as

by rotating the coordinate axes through an angle where 

The coefficients of the new equation are obtained by making the substitutions

and y � x� sin � � y� cos �.x � x� cos � � y� sin �

cot 2� �
A � C

B
.

�,

A��x� �2 � C��y� �2 � D�x� � E�y� � F� � 0

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

xy-
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664 Chapter 9 Topics in Analytic Geometry

Example 7 Rotation of Axes for a Hyperbola

Rotate the axes to eliminate the term in the equation

Then write the equation in standard form and sketch its graph.

Solution
Because and you have

which implies that or The equation in the -system is obtained by

making the substitutions

and

The equation in the -system is obtained by substituting these expressions into the
equation 

Write in standard form.

In the -system, this is a hyperbola centered at the origin with vertices at 
as shown in Figure 9.41. To find the coordinates of the vertices in the system,
substitute the coordinates into the equations

and

This substitution yields the vertices and in the system. Note also 
that the asymptotes of the hyperbola have equations

which correspond to the original and axes.

Now try Exercise 73.

y-x-

y� � ±x�

xy-��1, �1��1, 1�

y �
x� � y�

�2
.x �

x� � y�

�2

�±�2, 0�
xy-
�±�2, 0�,x�y�

 
�x� �2

��2 �2 �
� y� �2

��2 �2 � 1

 
�x� �2 � �y� �2

2
� 1 � 0

 �x� � y�

�2 ��x� � y�

�2 � � 1 � 0

xy � 1 � 0.
x�y�

 �
x� � y�

�2
.

 � x�� 1

�2� � y�� 1

�2�

 y � x� sin 
	

4
� y� cos 

	

4

 �
x� � y�

�2

 � x�� 1

�2� � y�� 1

�2�

 x � x� cos 
	

4
� y� sin 

	

4

x�y�� �
	

4
.2� �

	

2
,

cot 2� �
A � C

B
� 0

C � 0,A � 0, B � 1,

xy � 1 � 0.

xy-

x ′y ′

( )x ′ 2 ( )y ′ 2

− = 1

−1−2 21

2

1

−1

2
2( ( 2

2( (

x 

y

xy − 1 = 0

Vertices:
In -system:
In system:
Figure 9.41

	1, 1
, 	�1, �1
xy-
��2, 0�, ���2, 0�x� y�
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Section 9.3 Hyperbolas and Rotation of Conics 665

Matching an Equation with a Graph In Exercises 7–10,
match the equation with its graph. [The graphs are
labeled (a), (b), (c), and (d).]

(a) (b) 

(c) (d) 

7. 8.

9. 10.

Finding the Center, Vertices, Foci, and Asymptotes of a
Hyperbola In Exercises 11–20, find the center, vertices,
foci, and asymptotes of the hyperbola, and sketch its
graph using the asymptotes as an aid. Use a graphing
utility to verify your graph.

11. 12.

13. 14.

15. 16.

17.

18.

19.

20.

Sketching a Hyperbola In Exercises 21–30, (a) find the
standard form of the equation of the hyperbola, (b) find
the center, vertices, foci, and asymptotes of the hyperbola,
and (c) sketch the hyperbola. Use a graphing utility to
verify your graph.

21. 22.

23. 24.

25.

26.

27.

28.

29.

30. 9x2 � y2 � 54x � 10y � 55 � 0

9y2 � x2 � 2x � 54y � 62 � 0

16y2 � x2 � 2x � 64y � 63 � 0

x2 � 9y2 � 2x � 54y � 80 � 0

x2 � 9y2 � 36y � 72 � 0

9x2 � y2 � 36x � 6y � 18 � 0

6y2 � 3x2 � 182x2 � 3y2 � 6

25x2 � 4y2 � 1004x2 � 9y2 � 36

� y � 1�2

1
4

�
�x � 3�2

1
16

� 1

�y � 5�2

1
9

�
�x � 1�2

1
4

� 1

�x � 3�2

144
�

�y � 2�2

25
� 1

�x � 1�2

4
�

�y � 2�2

1
� 1

x2

36
�

y2

4
� 1

y2

25
�

x2

81
� 1

y2

9
�

x2

1
� 1

y2

1
�

x2

4
� 1

x2

9
�

y2

25
� 1x2 � y2 � 1

�x � 1�2

16
�

�y � 2�2

9
� 1

�x � 1�2

16
�

y2

4
� 1

y2

25
�

x2

9
� 1

y2

9
�

x2

25
� 1

8−10

−4

8

12−12

−8

8

9−9

−6

6

10−8

−6

6

Vocabulary and Concept Check
In Exercises 1–4, fill in the blank(s).

1. A _______ is the set of all points in a plane, the difference of whose 
distances from two distinct fixed points is a positive constant.

2. The line segment connecting the vertices of a hyperbola is called the _______ ,
and the midpoint of the line segment is the _______ of the hyperbola.

3. The general form of the equation of a conic is given by _______ .

4. The procedure used to eliminate the -term in a general second-degree equation
is called _______ of ______.

5. Which of the following equations of a hyperbola have a horizontal transverse
axis? a vertical transverse axis?

(a) (b)

(c) (d)

6. How many asymptotes does a hyperbola have? Where do these asymptotes intersect?

Procedures and Problem Solving

x2

a2 �
y2

b2 � 1
y2

a2 �
x2

b2 � 1

�y � k�2

a2 �
�x � h�2

b2 � 1
�x � h�2

a2 �
�y � k�2

b2 � 1

xy

�x, y�

9.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.

1111572836_0903.qxd  9/29/10  3:51 PM  Page 665

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Finding the Standard Equation of a Hyperbola In
Exercises 31–36, find the standard form of the equation
of the hyperbola with the given characteristics and center
at the origin.

31. Vertices: foci:

32. Vertices: foci:

33. Vertices: asymptotes:

34. Vertices: asymptotes:

35. Foci: asymptotes:

36. Foci: asymptotes:

Finding the Standard Equation of a Hyperbola In
Exercises 37–48, find the standard form of the equation
of the hyperbola with the given characteristics.

37. Vertices: foci:

38. Vertices: foci:

39. Vertices: foci:

40. Vertices: foci:

41. Vertices:
passes through the point 

42. Vertices:
passes through the point 

43. Vertices:
passes through the point 

44. Vertices:
passes through the point 

45. Vertices:
asymptotes:

46. Vertices:
asymptotes:

47. Vertices: asymptotes:

48. Vertices: asymptotes:

49. Meteorology You and a friend live 4 miles apart (on
the same “east-west” street) and are talking on the phone.
You hear a clap of thunder from lightning in a storm, and
18 seconds later your friend hears the thunder. Find 
an equation that gives the possible places where the
lightning could have occurred. (Assume that the 
coordinate system is measured in feet and that sound
travels at 1100 feet per second.)

50. (p. 656) Three listening
stations located at 
and monitor an explosion. 
The last two stations detect the explosion 
1 second and 4 seconds after the first,
respectively. Determine the coordinates of
the explosion. (Assume that the coordinate
system is measured in feet and that sound
travels at 1100 feet per second.)

51. Art and Design The base for the pendulum of a clock
has the shape of a hyperbola (see figure).

(a) Write an equation of the cross section of the base.

(b) Each unit in the coordinate plane represents foot.
Find the width of the base 4 inches from the bottom.

1
2

−4−8 4 8−4 

4 

x 

y 

(2, 9) 

(1, 0) (−1, 0)

(2, −9)

(−2, 9)

(−2, −9)

��3300, 0�
�3300,  1100�,�3300, 0�,

y �
2
3x,  y � 4 �

2
3x�3, 0�, �3, 4�;

y �
2
3x,  y � 4 �

2
3x�0, 2�, �6, 2�;

y � �xy � x � 6,
�3, 0�, �3, �6�;

y � 4 � xy � x,
�1, 2�, �3, 2�;

�0, �5�
�1, 2�, �1, �2�;

��5, �1�
�0, 4�, �0, 0�;

�5, 4�
��2, 1�, �2, 1�;

�0, 5�
�2, 3�, �2, �3�;

��3, 1�, �3, 1���2, 1�, �2, 1);

�4, 0�, �4, 10��4, 1�, �4, 9�;
�2, 5�, �2, �5��2, 3�, �2, �3�;

�0, 0�, �8, 0��2, 0�, �6, 0�;

y � ±3
4x�±10, 0�;

y � ±4x�0, ±8�;
y � ±3x�0, ±3�;
y � ±5x�±1, 0�;

�±6, 0��±3, 0�;
�0, ±4��0, ±2�;

666 Chapter 9 Topics in Analytic Geometry

52. MODELING DATA
Long distance radio navigation for aircraft and ships uses
synchronized pulses transmitted by widely separated
transmitting stations. These pulses travel at the speed
of light (186,000 miles per second). The difference in
the times of arrival of these pulses at an aircraft or ship
is constant on a hyperbola having the transmitting 
stations as foci. Assume that two stations, 300 miles
apart, are positioned on a rectangular coordinate 
system at coordinates and and 
that a ship is traveling on a hyperbolic path with 
coordinates (see figure).

(a) Find the coordinate of the position of the ship
when the time difference between the pulses from
the transmitting stations is 1000 microseconds
(0.001 second).

(b) Determine the distance between the ship and
station 1 when the ship reaches the shore.

(c) The captain of the ship wants to enter a bay located
between the two stations. The bay is 30 miles from
station 1. What should be the time difference
between the pulses?

(d) The ship is 60 miles offshore when the time
difference in part (c) is obtained. What is the position
of the ship?

x-

Station 2 Station 1 

Bay 

150 50 −50−150

100 

50 

−50

y 

x 

Not drawn to scale 

�x, 75�

�150, 0�,��150, 0�

Chubykin Arkady 2010/used under license from Shutterstock.com
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Section 9.3 Hyperbolas and Rotation of Conics 667

53. Hyperbolic Mirror A hyperbolic mirror (used in some
telescopes) has the property that a light ray directed at a
focus will be reflected to the other focus. The focus of
a hyperbolic mirror (see figure) has coordinates 
Find the vertex of the mirror given that the mount at the
top edge of the mirror has coordinates 

54. Photography A panoramic photo can be taken using
a hyperbolic mirror. The camera is pointed toward the 
vertex of the mirror and the camera’s optical center is
positioned at one focus of the mirror (see figure). An
equation for the cross-section of the mirror is

Find the distance from the camera’s optical center to the
mirror.

Classifying a Conic from a General Equation In
Exercises 55–64, classify the graph of the equation as a
circle, a parabola, an ellipse, or a hyperbola.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Matching an Equation with a Graph In Exercises 65–70,
match the graph with its equation. [The graphs are
labeled (a), (b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f )

65. 66.

67.

68.

69.

70.

Finding a Point in a Rotated Coordinate System In
Exercises 71 and 72, the -coordinate system has been
rotated degrees from the coordinate system. The
coordinates of a point in the coordinate system are
given. Find the coordinates of the point in the rotated
coordinate system.

71. 72.

Rotation of Axes In Exercises 73–80, rotate the axes to
eliminate the term in the equation. Then write the
equation in standard form. Sketch the graph of the
resulting equation, showing both sets of axes.

73. 74.

75.

76.

77.

78.

79.

80.

Graphing a Conic In Exercises 81–84, use a graphing
utility to graph the conic. Determine the angle through
which the axes are rotated. Explain how you used the
graphing utility to obtain the graph.

81. 82.

83.

84. 40x2 � 36xy � 25y2 � 52

17x2 � 32xy � 7y2 � 75

x2 � 4xy � 2y2 � 8x2 � 3xy � y2 � 20

�

16x2 � 24xy � 9y2 � 60x � 80y � 100 � 0

3x2 � 2�3xy � y2 � 2x � 2�3y � 0

13x2 � 6�3xy � 7y2 � 16 � 0

5x2 � 6xy � 5y2 � 12 � 0

xy � x � 2y � 3 � 0

x2 � 4xy � y2 � 1 � 0

xy � 2 � 0xy � 1 � 0

xy-

� � 45
, �3, 3�� � 90
, �0, 3�

xy-
xy-�

x�y�

x2 � 4xy � 4y2 � 10x � 30 � 0

3x2 � 2xy � y2 � 10 � 0

x2 � xy � 3y2 � 5 � 0

�2x2 � 3xy � 2y2 � 3 � 0

x2 � 2xy � y2 � 0xy � 4 � 0

6−6

−4

4

6−6

−4

4

6−6

−4

4

6−6

−4

4

6−6

−4

4

6−6

−4

4

9x2 � 4y2 � 90x � 8y � 228 � 0

x2 � 6x � 2y � 7 � 0

y2 � x2 � 2x � 6y � 8 � 0

x2 � y2 � 2x � 6y � 0

4x2 � 25y2 � 16x � 250y � 541 � 0

y2 � 12x � 4y � 28 � 0

x2 � 4x � 8y � 20 � 0

16x2 � 9y2 � 32x � 54y � 209 � 0

x2 � y2 � 4x � 6y � 23 � 0

9x2 � 4y2 � 18x � 16y � 119 � 0

y 

Mirror Optical 
Center 

x2

25
�

y2

16
� 1.

(24, 0) (−24, 0)

(24, 24)

x 

y 

�24, 24�.

�24, 0�.
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668 Chapter 9 Topics in Analytic Geometry

Sketching the Graph of a Degenerate Conic In
Exercises 85–88, sketch (if possible) the graph of the
degenerate conic.

85.

86.

87.

88.

Conclusions
True or False? In Exercises 89–93, determine whether
the statement is true or false. Justify your answer.

89. In the standard form of the equation of a hyperbola, the
larger the ratio of to the larger the eccentricity of
the hyperbola.

90. In the standard form of the equation of a hyperbola, the
trivial solution of two intersecting lines occurs when

91. If and then the graph of 
is a hyperbola.

92. If the asymptotes of the hyperbola

where 

intersect at right angles, then 

93. After using a rotation of axes to eliminate the term
from an equation of the form

the coefficients of the - and -terms remain and 
respectively.

94. Think About It Consider a hyperbola centered at 
the origin with a horizontal transverse axis. Use the 
definition of a hyperbola to derive its standard form.

95. Writing Explain how the central rectangle of a 
hyperbola can be used to sketch its asymptotes.

96. Exploration Use the figure to show that

97. Think About It Find the equation of the hyperbola for
any point on which the difference between its distances
from the points and is 6.

98. Proof Show that for the equation of
the hyperbola

where the distance from the center of the hyperbola
to a focus is 

99. Proof Prove that the graph of the equation

is one of the following (except in degenerate cases).

Conic Condition

(a) Circle

(b) Parabola or (but not both)

(c) Ellipse

(d) Hyperbola

Cumulative Mixed Review
Operations with Polynomials In Exercises 101–104,
perform the indicated operation.

101. Subtract:

102. Multiply:

103. Divide:

104. Expand:

Factoring a Polynomial In Exercises 105–110, factor the
polynomial completely.

105. 106.

107. 108.

109. 110.

Graphing a Function In Exercises 111–118, graph the
function.

111. 112.

113. 114.

115. 116.

117. 118.  f�t� � �2 �t� � 3 f�t� � �t � 5� � 1

h�t� �
1
2�t � 4�3h�t� � ��t � 2�3 � 3

g�x� � �3x � 2g�x� � �4 � x2

 f�x� � 
x � 4
 � 1 f�x� � 
x � 3


4 � x � 4x2 � x316x3 � 54

6x3 � 11x2 � 10x2x3 � 24x2 � 72x

x2 � 14x � 49x3 � 16x

��x � y� � 3�2

x3 � 3x � 4
x � 2

�3x �
1
2��x � 4�

�x3 � 3x2� � �6 � 2x � 4x2�

AC < 0

AC > 0

C � 0A � 0

A � C

Ax2 � Cy2 � Dx � Ey � F � 0

c.�0, 0�

x2

a2 �
y2

b2 � 1

c2 � a2 � b2

�10, 2��2, 2�

(−c, 0) (c, 0) 

(a, 0) (−a, 0)

x 

(x, y)

y 

d2
d1 


d2 � d1
 � 2a.

C,Ay2x2

Cy2 � Dx � Ey � F � 0Ax2 � Bxy �

xy-

a � b.

b > 0a,
x2

a2 �
y2

b2 � 1,

Ey � 0
x2 � y2 � Dx �E � 0,D � 0

b � 0.

a,b

x2 � 10xy � y2 � 0

x2 � 2xy � y2 � 1 � 0

x2 � y 2 � 2x � 6y � 10 � 0

y2 � 16x2 � 0

100. C A P S T O N E Given the hyperbolas

and

describe any common characteristics that the 
hyperbolas share, as well as any differences in the
graphs of the hyperbolas. Verify your results by
using a graphing utility to graph both hyperbolas in
the same viewing window.

y2

9
�

x2

16
� 1

x2

16
�

y2

9
� 1
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Section 9.4 Parametric Equations 669

Plane Curves
Up to this point, you have been representing a graph by a single equation involving two
variables such as and In this section, you will study situations in which it is useful
to introduce a third variable to represent a curve in the plane.

To see the usefulness of this procedure, consider the path of an object that is 
propelled into the air at an angle of . When the initial velocity of the object is 48 feet
per second, it can be shown that the object follows the parabolic path

Rectangular equation

as shown in Figure 9.42. However, this equation does not tell the whole story. Although
it does tell you where the object has been, it does not tell you when the object was 
at a given point on the path. To determine this time, you can introduce a third 
variable called a parameter. It is possible to write both and as functions of to
obtain the parametric equations

Parametric equation for 

Parametric equation for 

From this set of equations you can determine that at time the object is at the point
Similarly, at time the object is at the point 

and so on.

Curvilinear motion: two variables for position, one variable for time
Figure 9.42

For this particular motion problem, and are continuous functions of 
and the resulting path is a plane curve. (Recall that a continuous function is 
one whose graph can be traced without lifting the pencil from the paper.)

t,yx

Rectangular equation:

y = −      + x

Parametric equations:
x = 24    2t

y = −16t2 + 24    2t

(36, 18) 

(0, 0) 

(72, 0) 

9 

9 

18 

18 

27 36 45 54 63 72 
t = 0

x 

y 

x2

72

t =
3    2 

2 
t = 

3    2
4

24�2 � 16��24�2,

t � 1,�0, 0�.
t � 0,

yy � �16t2 � 24�2 t.

xx � 24�2 t

tyxt,
�x, y�

y � �
x2

72
� x

45�

y.x

9.4 Parametric Equations

What you should learn
● Evaluate sets of parametric

equations for given values of 

the parameter.

● Graph curves that are represented

by sets of parametric equations.

● Rewrite sets of parametric 

equations as single rectangular

equations by eliminating the

parameter.

● Find sets of parametric equations

for graphs.

Why you should learn it
Parametric equations are useful for

modeling the path of an object. For

instance, in Exercise 62 on page 676,

a set of parametric equations is used

to model the path of a football.

Definition of a Plane Curve

If and are continuous functions of on an interval then the set of 
ordered pairs 

is a plane curve . The equations given by

and

are parametric equations for , and is the parameter.tC

y � g�t�x � f �t�

C

� f �t�, g�t��

I,tgf

Richard Paul Kane 2010/used under license from Shutterstock.com
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t �2 �1 0 1 2 3

x 0 �3 �4 �3 0 5

y �1 �
1
2 0 1

2 1 3
2

670 Chapter 9 Topics in Analytic Geometry

Graphs of Plane Curves
One way to sketch a curve represented by a pair of parametric equations is to plot points
in the -plane. Each set of coordinates is determined from a value chosen for the
parameter By plotting the resulting points in the order of increasing values of you
trace the curve in a specific direction. This is called the orientation of the curve.

Example 1 Sketching a Plane Curve

Sketch the curve given by the parametric equations

and

Describe the orientation of the curve.

Solution
Using values of in the interval, the parametric equations yield the points 
shown in the table.

By plotting these points in the order of 
increasing you obtain the curve shown in 
Figure 9.43. The arrows on the curve indicate 
its orientation as increases from to 3. So,
when a particle moves on this curve, it would 
start at and then move along the curve 
to the point 

Now try Exercise 9(a) and (b).

Note that the graph shown in Figure 9.43 
does not define as a function of This points 
out one benefit of parametric equations—they 
can be used to represent graphs that are more 
general than graphs of functions.

Two different sets of parametric equations 
can have the same graph. For example, the set 
of parametric equations

and

has the same graph as the set given in Example 1.
However, by comparing the values of in 
Figures 9.43 and 9.44, you can see that this second
graph is traced out more rapidly (considering 
as time) than the first graph. So, in applications,
different parametric representations can be used to 
represent various speeds at which objects travel 
along a given path.

t

t

�1 � t � 3
2y � t,x � 4t 2 � 4

x.y

�5, 32�.
�0, �1�

�2t

t,

�x, y�t

�2 � t � 3.y �
t

2
,x � t 2 � 4

t,t.
�x, y�xy

Technology Tip
Most graphing utilities
have a parametric
mode. So, another way

to graph a curve represented by 
a pair of parametric equations
is to use a graphing utility,
as shown in Example 2. For
instructions on how to use the
parametric mode, see Appendix
A; for specific keystrokes, go 
to this textbook’s Companion
Website.

Figure 9.44

Figure 9.43

CAP53/iStockphoto.com
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Section 9.4 Parametric Equations 671

Example 2 Using a Graphing Utility in Parametric Mode

Use a graphing utility to graph the curves represented by the parametric equations.
Using the graph and the Vertical Line Test, for which curve is a function of 

a.

b.

c.

Solution
Begin by setting the graphing utility to parametric mode. When choosing a viewing
window, you must set not only minimum and maximum values of and but also 
minimum and maximum values of 

a. Enter the parametric equations for and as shown in Figure 9.45. Use the viewing
window shown in Figure 9.46. The curve is shown in Figure 9.47. From the graph,
you can see that is not a function of 

Figure 9.45 Figure 9.46 Figure 9.47

b. Enter the parametric equations for and as shown in Figure 9.48. Use the viewing
window shown in Figure 9.49. The curve is shown in Figure 9.50. From the graph,
you can see that is a function of 

Figure 9.48 Figure 9.49 Figure 9.50

c. Enter the parametric equations for and as shown in Figure 9.51. Use the viewing
window shown in Figure 9.52. The curve is shown in Figure 9.53. From the graph,
you can see that is not a function of 

Figure 9.51 Figure 9.52 Figure 9.53

Now try Exercise 9(c).

x.y

y,x

x.y

y,x

x.y

y,x

t.
y,x

y � tx � t2,

y � t3x � t,

y � t3x � t2,

x?y
Explore the Concept

Use a graphing utility
set in parametric mode
to graph the curve

and

Set the viewing window so that
and 

Now, graph the curve with
various settings for Use the
following.

a.

b.

c.

Compare the curves given by
the different settings. Repeat
this experiment using 
How does this change the
results?

x � �t.
t

�3 � t � 3

�3 � t � 0

0 � t � 3

t.

�12 � y � 2.�4 � x � 4

y � 1 � t2.x � t

Technology Tip
Notice in Example 2
that in order to set the
viewing windows of

parametric graphs, you have to
scroll down to enter the Ymax
and Yscl values.

1111572836_0904.qxd  9/29/10  3:52 PM  Page 671

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



672 Chapter 9 Topics in Analytic Geometry

Eliminating the Parameter
Many curves that are represented by sets of parametric equations have graphs that can
also be represented by rectangular equations (in and ). The process of finding the 
rectangular equation is called eliminating the parameter.

Now you can recognize that the equation represents a parabola with a 
horizontal axis and vertex at 

When converting equations from parametric to rectangular form, you may need to
alter the domain of the rectangular equation so that its graph matches the graph of the
parametric equations. This situation is demonstrated in Example 3.

Example 3 Eliminating the Parameter

Identify the curve represented by the equations

and

Solution
Solving for in the equation for produces

Substituting in the equation for you obtain the rectangular equation

From the rectangular equation, you can recognize that the curve is a parabola that 
opens downward and has its vertex at as shown in Figure 9.54. The rectangular
equation is defined for all values of The parametric equation for however, is
defined only when From the graph of the parametric equations, you can see
that is always positive, as shown in Figure 9.55. So, you should restrict the domain of

to positive values, as shown in Figure 9.56.

Figure 9.54 Figure 9.55 Figure 9.56

Now try Exercise 9(d).

−4

−4 4

2

t = 3
t = 0

t = −0.75

Parametric equations:

x = , y = 
t + 1t + 1

t1

−4

−4 4

2
y = 1 − x2

x
x

t > �1.
x,x.

�0, 1�,

y �
t

t � 1
�

1

x2
� 1

1

x2
� 1 � 1

�

 
1 � x2

x2
 

1

x2

�
x2

x2
� 1 � x2.

y,

1
x2 � 1 � t.

1

x2
� t � 1x2 �

1
t � 1

xt

y �
t

t � 1
.x �

1

�t � 1

��4, 0�.
x � 4y2 � 4

y �
1
2t

x � 4y 2 � 4x � �2y�2 � 4t � 2yx � t 2 � 4

Rectangular
equation

Substitute
in second
equation.

Solve for t in
one equation.

Parametric
equations

yx
Study Tip

It is important to 
realize that eliminating
the parameter is

primarily an aid to curve
sketching. When the parametric
equations represent the path of
a moving object, the graph
alone is not sufficient to
describe the object’s motion.
You still need the parametric
equations to determine the
position, direction, and speed
at a given time.

−4

−4 4

2

Rectangular equation:

y = 1 − x2, x > 0
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Section 9.4 Parametric Equations 673

Finding Parametric Equations for a Graph
You have been studying techniques for sketching the graph represented by a set of 
parametric equations. Now consider the reverse problem—that is, how can you find a
set of parametric equations for a given graph or a given physical description? From the
discussion following Example 1, you know that such a representation is not unique.
That is, the equations

and

produced the same graph as the equations

and

This is further demonstrated in Example 4.

Example 4 Finding Parametric Equations for a Given Graph

Find a set of parametric equations to represent the graph of using the 
parameters (a) and (b) 

Solution
a. Letting you obtain the following parametric equations.

Parametric equation for 

Parametric equation for 

The graph of these equations is shown in Figure 9.57.

Figure 9.57

b. Letting you obtain the following parametric equations.

Parametric equation for 

Parametric equation for 

The graph of these equations is shown in Figure 9.58. Note that the graphs in Figures
9.57 and 9.58 have opposite orientations.

Figure 9.58

Now try Exercise 47.

−4

−4 4

2

x = 1 − t
y = 2t − t2

t = 3

t = 2
t = 1

t = 0

t = −1

y y � 1 � �1 � t�2 � 2t � t2

x x � 1 � t

t � 1 � x,

−4

−4 4

2

t = −2

t = −1
t = 0

t = 1

t = 2

x = t
y = 1 − t2

yy � 1 � t2

x x � t

t � x,

t � 1 � x.t � x
y � 1 � x2

�2 � t � 3.y �
t
2

,x � t2 � 4

�1 � t �
3
2

y � t,x � 4t2 � 4

What’s Wrong?
You use a graphing utility in
parametric mode to graph the
parametric equations in
Example 4(a). You use a 
standard viewing window and
expect to obtain a parabola 
similar to Figure 9.57. Your
result is shown below. What’s
wrong?

−10 10

−10

10
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674 Chapter 9 Topics in Analytic Geometry

Identifying the Graph of Parametric Equations In
Exercises 5– 8, match the set of parametric equations
with its graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

5.

6.

7.

8. 5

9. Using Parametric Equations Consider the parametric
equations and 

(a) Create a table of and values using 1, 2, 3,
and 4.

(b) Plot the points generated in part (a) and sketch
a graph of the parametric equations for 
Describe the orientation of the curve.

(c) Use a graphing utility to graph the curve represented
by the parametric equations.

(d) Find the rectangular equation by eliminating the
parameter. Sketch its graph. How does the graph 
differ from those in parts (b) and (c)?

10. Using Parametric Equations Consider the parametric
equations and 

(a) Create a table of and values using 
and 

(b) Plot the points generated in part (a) and sketch

a graph of the parametric equations for 

Describe the orientation of the curve.

(c) Use a graphing utility to graph the curve represented
by the parametric equations.

(d) Find the rectangular equation by eliminating the
parameter. Sketch its graph. How does the graph
differ from those in parts (b) and (c)?

Identifying Parametric Equations for a Plane Curve In
Exercises 11 and 12, determine which set of parametric
equations represents the graph shown.

11. (a)

(b)

(c)

(d)

12. (a)

(b)

(c)

(d)

y � 2 � sin �

x � 3 � cos �

y � 3 � sin �

x � 2 � cos �

y � 2 � sin �

x � 3 � cos �

y � 3 � sin �

−1 1 2 3 4
−1

1

2

3

4

x 

y x � 2 � cos �

 y � t2

 x � �2t � 1

 y � t2

 x � 2t � 1

 y � t2

 x � 2t � 1

 y � 2t � 1

x 

y 

−4−8 4 8 12
−4

4

8

12

16

 x � t2

�
	

2
� t �

	

2
.

�x, y�
	�2.�	�4, 0, 	�4,

t � �	�2,y-x-

y � 4 sin t.x � 4 cos2 t

t 
 0.
�x, y�

t � 0,y-x-

y � 2 � t.x � �t

y � t � 2x �
1

t
,

y � tx � �t,

y � t � 2x � t2,

y � t � 2x � t,

−6

−1 11

2

−3

−7 5

5

−4

−6 6

4

−3

−6 6

5

Vocabulary and Concept Check
In Exercises 1 and 2, fill in the blank(s).

1. If and are continuous functions of on an interval then the set of ordered
pairs is a _______ The equations given by and 
are _______ for and is the _______ .

2. The _______ of a curve is the direction in which the curve is traced out for
increasing values of the parameter.

3. Given a set of parametric equations, how do you find the corresponding rectangular
equation?

4. What point on the plane curve represented by the parametric equations and
corresponds to 

Procedures and Problem Solving

t � 3?y � t
x � t

tC,
y � g�t�x � f�t�C.� f�t�, g�t��

I,tgf

9.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.
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Section 9.4 Parametric Equations 675

Sketching a Plane Curve and Eliminating the Parameter
In Exercises 13–28, sketch the curve represented by the
parametric equations (indicate the orientation of the
curve). Use a graphing utility to confirm your result. Then
eliminate the parameter and write the corresponding
rectangular equation whose graph represents the curve.
Adjust the domain of the resulting rectangular equation,
if necessary.

13. 14.

15. 16.

17. 18.
19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

Using a Graphing Utility in Parametric Mode In
Exercises 29–34, use a graphing utility to graph the
curve represented by the parametric equations.

29. 30.

31. 32.

33. 34.

Comparing Plane Curves In Exercises 35 and 36,
determine how the plane curves differ from each other.

35. (a) (b)

(c) (d)

36. (a) (b)

(c) (d)

Eliminating the Parameter In Exercises 37–40,
eliminate the parameter and obtain the standard form of
the rectangular equation.

37. Line through and 

38. Circle:

39. Ellipse:

40. Hyperbola:

Finding Parametric Equations for a Given Graph In
Exercises 41–44, use the results of Exercises 37–40 to
find a set of parametric equations for the line or conic.

41. Line: passes through 

42. Circle: center: radius: 4

43. Ellipse: vertices: foci:

44. Hyperbola: vertices: foci:

Finding Parametric Equations for a Given Graph In
Exercises 45–52, find a set of parametric equations 
to represent the graph of the given rectangular equation
using the parameters (a) and (b) 

45. 46.

47. 48.

49. 50.

51. 52.

Using a Graphing Utility In Exercises 53–56, use a
graphing utility to graph the curve represented by the
parametric equations.

53. Witch of Agnesi:

54. Folium of Descartes:

55. Cycloid:

56. Prolate cycloid:

Identifying a Graph In Exercises 57–60, match the
parametric equations with the correct graph. [The
graphs are labeled (a), (b), (c), and (d).]

(a) (b) 

(c) (d) 

57. Lissajous curve:

58. Evolute of ellipse:

59. Involute of circle:

60. Serpentine curve: x �
1
2 cot �, y � 4 sin � cos �

y �
1
2�sin � � � cos ��

x �
1
2�cos � � � sin ��

x � 2 cos3 �, y � 4 sin3 �

x � 2 cos �, y � sin 2�

−2

2

−4 2

−5

5

−

−2

2

−

3

−3

2−2

x � 2� � 4 sin �,  y � 2 � 4 cos �

x � � � sin �,  y � 1 � cos �

y �
3t2

1 � t3x �
3t

1 � t3,

y � 2 sin2 �x � 2 cot �,

y � ln�x � 4�y � ex

y � x3 � 2xy � 6x2 � 5

y �
1
2x

y �
1

x

y � 4 � 7xy � 5x � 3

t � 2 � x.t � x

�±4, 0��±2, 0�;
�±3, 0��±5, 0�;

�3, �2�;
�3, 1� and ��2, 6�

y � k � b tan �x � h � a sec �,

y � k � b sin �x � h � a cos �,

y � k � r sin �x � h � r cos �,

y � y1 � t�y2 � y1�
x � x1 � t�x2 � x1�

�x2, y2�:�x1, y1�

y � 4 � t2y � 3 � t

x � �2t2x � 2�t � 1�
y � 4 � 3�ty � 4 � �t

x � 2 3�tx � 2�t

y � 2et � 1y � 2e�t � 1

x � etx � e�t

y � 2 cos � � 1y � 2t � 1

x � cos �x � t

y � 0.4t 2y � ln�t 2 � 1�
x � 10 � 0.01etx � t�2

y � tan �y � 2 tan �

x � sec �x � 4 sec �

y � �2 � 2 sin �y � �2 � sin �

x � 4 � 3 cos �x � 4 � 3 cos �

y � 2t 2x � ln 2t,y � 3 ln tx � t3,

y � etx � e2t,y � e3tx � e�t,

y � 4 sin �x � cos �,y � 3 sin �x � 2 cos �,

y � t � 2x � �t � 1�,y � �t � 2�x � 2t,

y � 1 � tx � �t,y � t2x � t � 2,

y � t3x � t,y � t 2x �
1
4t,

y � 2 � 3tx � 3 � 2t,y � 2t � 1x � 3t � 3,

y �
1
2tx � t,y � �4tx � t,
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676 Chapter 9 Topics in Analytic Geometry

Projectile Motion In Exercises 61 and 62, consider a
projectile launched at a height of feet above the ground
at an angle of with the horizontal. The initial velocity
is feet per second and the path of the projectile is 
modeled by the parametric equations

and

62. (p. 669) The quarterback
of a football team releases a pass at a height
of 7 feet above the playing field, and the
football is caught by a receiver at a height 
of 4 feet, 30 yards directly downfield. The
pass is released at an angle of with the
horizontal.

(a) Write a set of parametric equations for
the path of the football.

(b) Find the speed of the football when it is released.

(c) Use a graphing utility to graph the path of the 
football and approximate its maximum height.

(d) Find the time the receiver has to position himself
after the quarterback releases the football.

Conclusions
True or False? In Exercises 63–66, determine whether
the statement is true or false. Justify your answer.

63. The two sets of parametric equations 
and correspond to the same 
rectangular equation.

64. Because the graphs of the parametric equations 
and both represent the line 

they are the same plane curve.

65. If is a function of and is a function of then must
be a function of 

66. The parametric equations and 
where and represent a circle centered at

when 

67. Think About It The graph of the parametric equations
and is shown below. Would the graph

change for the equations and If
so, how would it change?

Cumulative Mixed Review
Testing for Evenness and Oddness In Exercises 69–72,
check for symmetry with respect to both axes and to the
origin. Then determine whether the function is even,
odd, or neither.

69.

70.

71.

72. �x � 2�2 � y � 4

y � ex

 f�x� � �x

 f�x� �
4x2

x2 � 1

−5

−6 6

3

y � �t � 1?x � ��t�3
y � t � 1x � t3

a � b.�h, k�
b � 0,a � 0

y � bt � k,x � at � h

x.
yt,xty

y � x,x � t, y � ty � t2
x � t2,

y � 9t 2 � 1x � 3t,
y � t 2 � 1x � t,

35�

�v0 sin �� t � 16t2.y � h �x � �v0 cos �� t

v0

�
h

61. MODELING DATA
The center field fence in Yankee Stadium is 7 feet high
and 408 feet from home plate. A baseball is hit at a
point 3 feet above the ground. It leaves the bat at an angle
of degrees with the horizontal at a speed of 100 miles
per hour (see figure).

(a) Write a set of parametric equations that model the
path of the baseball.

(b) Use a graphing utility to graph the path of the 
baseball when Is the hit a home run?

(c) Use the graphing utility to graph the path of the 
baseball when Is the hit a home run?

(d) Find the minimum angle required for the hit to be
a home run.

� � 23�.

� � 15�.

θ

408 ft3 ft

7 ft

Not drawn to scale

�

68. C A P S T O N E The curve shown is represented by the
parametric equations

and

(a) Describe the orientation of the curve.

(b) Determine a range of that gives the graph of a
circle.

(c) Write a set of parametric equations representing
the curve so that the curve traces from the same
point as the original curve, but in the opposite
direction.

(d) How does the original curve change when cosine
and sine are interchanged?

�

12−12

−8

8

0 � � � 6.y � 6 sin �,x � 6 cos �

Richard Paul Kane 2010/used under license from Shutterstock.com
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Section 9.5 Polar Coordinates 677

Introduction
So far, you have been representing graphs of equations as collections of points 
in the rectangular coordinate system, where and represent the directed distances
from the coordinate axes to the point In this section, you will study a second
coordinate system called the polar coordinate system.

To form the polar coordinate system in the plane, fix a point called the pole (or
origin), and construct from an initial ray called the polar axis, as shown in Figure
9.59. Then each point in the plane can be assigned polar coordinates as follows.

1. from to 

2. counterclockwise from the polar axis to segment 

Figure 9.59

Example 1 Plotting Points in the Polar Coordinate System

a. The point lies two units from the pole on the terminal side

of the angle as shown in Figure 9.60.

b. The point lies three units from the pole on the terminal side

of the angle as shown in Figure 9.61.

c. The point coincides with the point as shown in 

Figure 9.62.

Figure 9.60 Figure 9.61

Now try Exercise 9.

( ) 

2 3
π 0 

= −θ π
6

π
6

3, − 
π 3   
2 

π    
2 

π 0 

= θ π 
3 π

3( ) 

321

2, 

π 3   
2 

π    
2 

�3, �
�

6�,�r, �� � �3, 
11�

6 �

� � �
�

6
,

�r, �� � �3, �
�

6�

� �
�

3
,

�r, �� � �2, 
�

3�

r =
 dire

cte
d dist

an
ce

θ 
O 

= directed angle Polar
axis

P = (r,   )θ

OP� � directed angle,

POr � directed distance

�r, ��P
O

O,

�x, y�.
yx

�x, y�

9.5 Polar Coordinates

What you should learn
● Plot points and find multiple

representations of points in the

polar coordinate system.

● Convert points from rectangular

to polar form and vice versa.

● Convert equations from 

rectangular to polar form and

vice versa.

Why you should learn it
Polar coordinates offer a different

mathematical perspective on 

graphing. For instance, in Exercises

9–16 on page 681, you will see that

a polar coordinate can be written in

more than one way.

2 3
π 0 

π 3   
2 

= θ 

π( ) 3, 11
6

π11
6

π    
2 

Figure 9.62
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678 Chapter 9 Topics in Analytic Geometry

In rectangular coordinates, each point has a unique representation. This is not
true for polar coordinates. For instance, the coordinates 

and

represent the same point, as illustrated in Example 1. Another way to obtain multiple
representations of a point is to use negative values for Because is a directed distance,
the coordinates 

and

represent the same point. In general, the point can be represented as

or

where is any integer. Moreover, the pole is represented by

where is any angle.

Example 2 Multiple Representations of Points

Plot the point 

and find three additional polar representations of this point, using

Solution
The point is shown in Figure 9.63. Three other representations are as follows.

Add to 

Replace by subtract from 

Replace by add to 

Figure 9.63

Now try Exercise 11.

2 1 3

π π  π π 
4 4  4 4 ( )  ( )  ( ) ( )  3 5  7 3, =  3,         = 3  , =  3,       = ...− −      − − 

π 0 

= −θ 

( )3, − 
π3
4

π3
4

π 3   
2 

π    
2 

�.��r;r ��3, �
3�

4
� �� � ��3, 

�

4�

�.��r;r ��3, �
3�

4
� �� � ��3, �

7�

4 �

�.2� �3, �
3�

4
� 2�� � �3, 

5�

4 �

�2� < � < 2�.

�3, �
3�

4 �

�

�0, ��

n

�r, �� � ��r, � ± �2n � 1����r, �� � �r, � ± 2n��

�r, ��

��r, � � ���r, ��

rr.

�r, � � 2���r, ��

�x, y�

Explore the Concept
Set your graphing 
utility to polar
mode. Then graph the 

equation Use a viewing 
window in which 

and
You should obtain a circle of
radius 3.

a. Use the trace feature to
cursor around the circle. 
Can you locate the point

b. Can you locate other 
representations of the point

If so, explain
how you did it. 
�3, 5��4�?

�3, 5��4�?

�4 � y � 4.��6 � x � 6,
0 � � � 2�,

�r � 3.

Andresr 2010/used under license from Shutterstock.com

1111572836_0905.qxd  9/29/10  3:52 PM  Page 678

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 9.5 Polar Coordinates 679

Coordinate Conversion
To establish the relationship between polar and rectangular coordinates, let the polar
axis coincide with the positive axis and the pole with the origin, as shown in Figure
9.64. Because lies on a circle of radius it follows that Moreover,
for the definitions of the trigonometric functions imply that

and

You can show that the same relationships hold for 

Example 3 Polar-to-Rectangular Conversion

Convert the point to rectangular coordinates.

Solution
For the point you have the following.

The rectangular coordinates are (See Figure 9.65.)

Now try Exercise 17.

Example 4 Rectangular-to-Polar Conversion

Convert the point to polar coordinates.

Solution
For the second-quadrant point you have

Because lies in the same quadrant as use positive 

So, one set of polar coordinates is

as shown in Figure 9.66.

Now try Exercise 35.

�r, �� � ��2, 
3�

4 �

r � �x2 � y2 � ���1�2 � �1�2 � �2

r.�x, y�,�

 � �
3�

4
.

 tan � �
y

x
�

1

�1
� �1

�x, y� � ��1, 1�,

��1, 1�

�x, y� � ��2, 0�.

y � r sin � � 2 sin � � 0

x � r cos � � 2 cos � � �2

�r, �� � �2, ��,

�2, ��

r < 0.

sin � �
y

r
.cos � �

x

r
,tan � �

y

x
,

r > 0,
r2 � x2 � y2.r,�x, y�

x-

Coordinate Conversion

The polar coordinates are related to the rectangular coordinates 
as follows.

Polar-to-Rectangular Rectangular-to-Polar

r2 � x2 � y2y � r sin �

tan � �
y

x
x � r cos �

�x, y��r, ��

1 2

2

1

−1

θ π

(x, y) = (−2, 0) 

(r,   ) = (2,   ) 
x 

y 

Figure 9.65

(Origin) 
Polar axis
(x-axis)

Pole

r 

x 

y 

(r,   )    
(x, y)

θ 

θ 
x 

y 

Figure 9.64

1 2−2 −1

2 

1 

(x, y) = (−1, 1) 

( )( ,     ) =      2,r θ 
0 

π    
2 

π3
4

Figure 9.66
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680 Chapter 9 Topics in Analytic Geometry

Equation Conversion
By comparing Examples 3 and 4, you can see that point conversion from the polar to
the rectangular system is straightforward, whereas point conversion from the rectangu-
lar to the polar system is more involved. For equations, the opposite is true. To convert
a rectangular equation to polar form, you simply replace by and by 
For instance, the rectangular equation can be written in polar form as follows.

Rectangular equation

Polar equation

Simplest form

On the other hand, converting a polar equation to rectangular form requires considerable
ingenuity.

Example 5 demonstrates several polar-to-rectangular conversions that enable you
to sketch the graphs of some polar equations.

Example 5 Converting Polar Equations to Rectangular Form

Describe the graph of each polar equation and find the corresponding rectangular 
equation.

a. b. c.

Solution
a. The graph of the polar equation consists of all points that are two units from

the pole. In other words, this graph is a circle centered at the origin with a radius of
2, as shown in Figure 9.67. You can confirm this by converting to rectangular form,
using the relationship 

Polar equation Rectangular equation

b. The graph of the polar equation

consists of all points on the line that makes an angle of with the positive axis,
as shown in Figure 9.68. To convert to rectangular form, you make use of the 
relationship 

Polar equation Rectangular equation

c. The graph of the polar equation

is not evident by simple inspection, so you convert to rectangular form by using the
relationship 

Polar equation Rectangular equation

Now you can see that the graph is a vertical line, as shown in Figure 9.69.

Now try Exercise 91.

x � 1r cos � � 1r � sec�

r cos � � x.

r � sec�

y � �3xtan � � �3� �
�

3

tan � � y�x.

x-��3

� �
�

3

x2 � y2 � 22r2 � 22r � 2

r2 � x2 � y2.

r � 2

r � sec �� �
�

3
r � 2

 r � sec � tan �

 r sin � � �r cos ��2

 y � x2

y � x2
r sin �.yr cos �x

2 1 3
π 0 

π 3   
2 

π    
2 

Figure 9.67

π 0 

π 3   
2 

π    
2 

21 3

Figure 9.68

π 0 

π 3   
2 

π    
2 

2 3

Figure 9.69
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Section 9.5 Polar Coordinates 681

Finding Rectangular Coordinates In Exercises 5–8, a
point in polar coordinates is given. Find the corresponding
rectangular coordinates for the point.

5. 6.

7. 8.

Plotting Points in the Polar Coordinate System In
Exercises 9–16, plot the point given in polar coordinates
and find three additional polar representations of the
point, using 

9. 10.

11. 12.

13. 14.

15. 16.

Polar-to-Rectangular Conversion In Exercises 17–26,
plot the point given in polar coordinates and find the
corresponding rectangular coordinates for the point.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

Using a Graphing Utility to Find Rectangular Coordinates
In Exercises 27–34, use a graphing utility to find the 
rectangular coordinates of the point given in polar 
coordinates. Round your results to two decimal places.

27. 28.

29. 30.

31. 32.

33. 34.

Rectangular-to-Polar Conversion In Exercises 35–44,
plot the point given in rectangular coordinates and find
two sets of polar coordinates for the point for

35. 36.

37. 38.

39.

40.

41.

42.

43.

44. �5, 12�
�6, 9�
��3, �1�
���3, ��3 �
�3, �1�
��3, 4�

��3, �3��1, 1�
�0, �5���7, 0�

0 � � < 2�.

�8.2, �3.2���4.1, �0.5�
�5.4, 2.85��2.5, 1.58�
�8.25, 3.5���4.5, 1.3�

�4, 
11�

9 ��2, 
2�

9 �

��3, �1.57���5, �2.36�
�2�2, 4.71���2, 2.36�
�0, 

5�

4 ��0, �
7�

6 �
�16, 

5�

2 ���1, �
3�

4 �
�2, 

7�

6 ��4, �
�

3�

�0, �
�

4��3
2

, �
3�

2 �
�5�2, �

11�

6 ���3, 
5�

6 �
��3, �

7�

6 ���1, �
�

3�
�2, 

3�

4 ��3, 
5�

6 �
�2� < � < 2�.

31−1 2
0

π    
2 

θ(r,   ) = (0, −   )π

2 4
0 

π    
2 

( )π
4

5θ(r,   ) =   −1, 

�0, �����1, 
5�

4 �

1 2 3 4

( )π
2

3

0 

π    
2 

θ(r,   ) =   3, 
2 4

0 

π    
2 

( ,     ) =   4, r θ ( )π
2

�3, 
3�

2 ��4, 
�

2�

Vocabulary and Concept Check
In Exercises 1 and 2, fill in the blank(s).

1. The origin of the polar coordinate system is called the ________ .
2. For the point is the _______ from to and is the _______ 

counterclockwise from the polar axis to segment 

3. How are the rectangular coordinates related to the polar coordinates 

4. Do the polar coordinates and the rectangular coordinates represent
the same point?

Procedures and Problem Solving

��1, 0��1, ��
�r, ��?�x, y�

OP.
�PO�r, ��, r

9.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.

1111572836_0905.qxd  9/29/10  3:52 PM  Page 681

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



682 Chapter 9 Topics in Analytic Geometry

Using a Graphing Utility to Find Polar Coordinates In
Exercises 45–50, use a graphing utility to find one set of
polar coordinates for the point given in rectangular
coordinates. (There are many correct answers.)

45. 46.

47. 48.

49. 50.

Converting a Rectangular Equation to Polar Form In
Exercises 51–68, convert the rectangular equation to
polar form. Assume 

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

Converting a Polar Equation to Rectangular Form In
Exercises 69–88, convert the polar equation to rectangular
form.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85. 86.

87. 88.

Converting a Polar Equation to Rectangular Form In
Exercises 89–94, describe the graph of the polar equation
and find the corresponding rectangular equation. Sketch
its graph.

89. 90.

91. 92.

93. 94.

Conclusions
True or False? In Exercises 95 and 96, determine
whether the statement is true or false. Justify your
answer.

95. If and represent the same point in the
polar coordinate system, then 

96. If and represent the same point in the 
polar coordinate system, then for some 
integer 

97. Think About It
(a) Show that the distance between the points 

and is

(b) Describe the positions of the points relative to each
other for Simplify the Distance Formula
for this case. Is the simplification what you expected?
Explain.

(c) Simplify the Distance Formula for 
Is the simplification what you expected? Explain.

(d) Choose two points in the polar coordinate system
and find the distance between them. Then choose
different polar representations of the same two
points and apply the Distance Formula again.
Discuss the result.

99. Think About It Convert the polar equation
to rectangular form and identify

the graph.

100. Think About It Convert the polar equation
to rectangular form and 

verify that it is the equation of a circle. Find the radius
of the circle and the rectangular coordinates of the 
center of the circle.

Cumulative Mixed Review
Solving a Triangle Using the Law of Sines or Cosines In
Exercises 101–104, use the Law of Sines or the Law of
Cosines to solve the triangle.

101.

102.

103.

104. B � 71�, a � 21, c � 29

A � 56�, C � 38�, c � 12

A � 24�, a � 10, b � 6

a � 13, b � 19, c � 25

r � 2�h cos � � k sin ��

r � cos � � 3 sin �

�1 � �2 � 90�.

�1 � �2.

�r1
2 � r2

2 � 2r1r2 cos��1 � �2�.

�r2, �2�
�r1, �1�

n.
�1 � �2 � 2�n

�r, �2��r, �1�
�r1� � �r2�.

�r2, �2��r1, �1�

r � 2 csc �r � 3 sec �

� �
7�

6
� �

�

4

r � 8r � 6

r �
6

2 cos � � 3 sin �
r �

6

2 � 3 sin �

r �
2

1 � sin �
r �

1

1 � cos �

r � 3 cos 2�r � 2 sin 3�

r2 � sin 2�r2 � cos �

r � 2 sec �r � �3 csc �

r � 10r � 4

� � �� �
�

2

� �
11�

6
� �

5�

6

� �
5�

3
� �

2�

3

r � 2 cos �r � 4 sin �

x2 � y3y2 � x3

x2 � y 2 � 2ay � 0x2 � y 2 � 2ax � 0

x2 � y2 � 8y � 0x2 � y2 � 6x � 0

y2 � 8x � 16 � 0�x2 � y2�2 � 9�x2 � y 2�
2xy � 1xy � 4

3x � 5y � 2 � 03x � y � 2 � 0

x � ax � 8

y � xy � 4

x2 � y 2 � 16x2 � y2 � 9

a > 0.

�7
4, 32�� 5

2, 43�
�3�2, 3�2 ���3, 2�
��5, 2��3, �2�

98. C A P S T O N E In the rectangular coordinate system,
each point has a unique representation. Explain
why this is not true for a point in the polar 
coordinate system.

�r, ��
�x, y�
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Section 9.6 Graphs of Polar Equations 683

Introduction
In previous chapters you sketched graphs in rectangular coordinate systems. You began
with the basic point-plotting method. Then you used sketching aids such as a graphing
utility, symmetry, intercepts, asymptotes, periods, and shifts to further investigate the
natures of the graphs. This section approaches curve sketching in the polar coordinate
system similarly.

Example 1 Graphing a Polar Equation by Point Plotting

Sketch the graph of the polar equation by hand.

Solution
The sine function is periodic, so you can get a full range of values by considering 
values of in the interval as shown in the table.

By plotting these points, as shown in Figure 9.70, it appears that the graph is a circle of
radius 2 whose center is the point 

Figure 9.70

Now try Exercise 27.

You can confirm the graph found in Example 1 in three ways.

1. Convert to Rectangular Form Multiply each side of the polar equation by and
convert the result to rectangular form.

2. Use a Polar Coordinate Mode Set your graphing utility to polar mode and graph
the polar equation. (Use and 

3. Use a Parametric Mode Set your graphing utility to parametric mode and graph
and 

Most graphing utilities have a polar graphing mode. If yours doesn’t, you can rewrite
the polar equation in parametric form, using as a parameter, as follows.

and y � f �t� sin tx � f �t� cos t

tr � f���

y � �4 sin t� sin t.x � �4 sin t� cos t

�4 � y � 4.)�6 � x � 6,0 � � � �,

r

�x, y� � �0, 2�.

0 � � � 2�,�
r-

r � 4 sin �

9.6 Graphs of Polar Equations

What you should learn
● Graph polar equations by point

plotting.

● Use symmetry and zeros as

sketching aids.

● Recognize special polar graphs.

Why you should learn it
Several common figures, such as 

the circle in Exercise 10 on page 

689, are easier to graph in the 

polar coordinate system than in 

the rectangular coordinate system.

� 0
�

6
�

3
�

2
2�

3
5�

6
�

7�

6
3�

2
11�

6
2�

r 0 2 2�3 4 2�3 2 0 �2 �4 �2 0

Yuri Arcurs 2009/used under license from Shutterstock.com
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π 

θ 

θ 

π + 

0 

π 3   
2 

π    
2 

θ
π

(−r,   )
θ(r,    +   )

θ(r,   )

Symmetry with Respect
to the Pole

Testing for Symmetry in Polar Coordinates

The graph of a polar equation is symmetric with respect to the following when the
given substitution yields an equivalent equation.

1. The line Replace by or 

2. The polar axis: Replace by or 

3. The pole: Replace by or ��r, ��.�r, � � ���r, ��

��r, � ���.�r, ����r, ��

��r, ���.�r, � � ���r, ��� �
�

2
:

Symmetry and Zeros
In Figure 9.70, note that as increases from 0 to the graph is traced out twice.
Moreover, note that the graph is symmetric with respect to the line Had you
known about this symmetry and retracing ahead of time, you could have used fewer
points. The three important types of symmetry to consider in polar curve sketching are
shown in Figure 9.71.

Symmetry with Respect Symmetry with Respect

to the Line to the Polar Axis

Figure 9.71

You can determine the symmetry of the graph of (see Example 1) as
follows.

1. Replace by 

2. Replace by 

3. Replace by 

So, the graph of is symmetric with respect to the line � � ��2.r � 4 sin �

r � �4 sin ��r � 4 sin �

��r, ��:�r, ��

r � 4 sin���� � �4 sin �

�r, ���:�r, ��

r � �4 sin���� � 4 sin ��r � 4 sin����

��r, ���:�r, ��

r � 4 sin �

� �
�

2

π θ 
θ − 

0

π 3   
2 

π    
2 

θ
π

(r, −   )
θ(−r,    −    )

θ(r,   )

π 

θ
θ 

θ 

π
π 

(−r, −   )

θ(r,    −    ) θ(r,   )
− 

0 

π 3   
2 

π    
2 

� � ��2.
2��

Study Tip
Recall from Section 4.2 that the sine function is odd. That is,

sin���� � �sin �.
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Quick Tests for Symmetry in Polar Coordinates

1. The graph of is symmetric with respect to the line 

2. The graph of is symmetric with respect to the polar axis.r � g�cos ��

� �
�

2
.r � f �sin ��

Figure 9.72

Section 9.6 Graphs of Polar Equations 685

Example 2 Using Symmetry to Sketch a Polar Graph

Use symmetry to sketch the graph of 

by hand.

Solution
Replacing by produces

So, by using the even trigonometric identity, you can conclude that the curve is 
symmetric with respect to the polar axis. Plotting the points in the table and using polar axis
symmetry, you obtain the graph shown in Figure 9.72. This graph is called a limaçon.

Use a graphing utility to confirm this graph.

Now try Exercise 31.

The three tests for symmetry in polar coordinates
on page 684 are sufficient to guarantee symmetry, but 
they are not necessary. For instance, Figure 9.73
shows the graph of

Spiral of Archimedes

From the figure, you can see that the graph is symmetric
with respect to the line Yet the tests on page
684 fail to indicate symmetry because neither of the
following replacements yields an equivalent equation.

Original Equation Replacement New Equation

The equations discussed in Examples 1 and 2 are of the form

Example 1

and

Example 2

The graph of the first equation is symmetric with respect to the line and the
graph of the second equation is symmetric with respect to the polar axis. This observation
can be generalized to yield the following quick tests for symmetry.

� � ��2,

r � g�cos ��.

r � f�sin ��

r � �� � 3��r, �� by �r, � � ��r � � � 2�

�r � �� � 2��r, �� by ��r, ���r � � � 2�

Figure 9.73

� � ��2.

r � � � 2�.

−3

−2

3� �

�

2�

Spiral of Archimedes:
r =     + 2   , −4    ≤     ≤ 0π πθ θ

cos��u� � cos u� 3 � 2 cos �. r � 3 � 2 cos����

�r, ����r, ��

r � 3 � 2 cos �
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686 Chapter 9 Topics in Analytic Geometry

An additional aid to sketching graphs of polar equations involves knowing the 
-values for which In Example 1, when Some curves reach their

zeros at more than one point, as shown in Example 3.

Example 3 Analyzing a Polar Graph

Analyze the graph of

Solution
Symmetry: With respect to the polar axis

Zeros of r: when 

or

By plotting these points and using the specified symmetry and zeros, you can obtain the
graph shown in Figure 9.74. This graph is called a rose curve, and each loop on the graph
is called a petal. Note how the entire curve is generated as increases from 0 to 

Figure 9.74

Now try Exercise 35.

2 
π 0 

π 3   
2 

π    
2 

2 1 
π 0 

π 3   
2 

π    
2 

2 1 
π 0 

π 3   
2 

π    
2 

0 � � � �0 � � �
5�

6
0 � � �

2�

3

2 1 
π 0 

π 3   
2 

π    
2 

2 1 
π 0 

π 3   
2 

π    
2 

2 1 
π 0 

π 3   
2 

π    
2 

0 � � �
�

2
0 � � �

�

3
0 � � �

�

6

�.�

� �
�

6
, 

�

2
, 

5�

6

5�

2

3�

2
,3� �

�

2
,r � 0

r � 2 cos 3�.

� � 0.r � 0r � 0.�

Explore the Concept
Notice that the rose
curve in Example 3 
has three petals. How

many petals do the rose curves
and 

have? Determine the numbers
of petals for the curves

and 
where is a positive integer.n

r � 2 sin n�,r � 2 cos n�

r � 2 sin 3�r � 2 cos 4�

� 0
�

12
�

6
�

4
�

3
5�

12

�

2

r 2 �2 0 ��2 �2 ��2 0

Andresr 2010/used under license from Shutterstock.com
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Section 9.6 Graphs of Polar Equations 687

Special Polar Graphs
Several important types of graphs have equations that are simpler in polar form than in
rectangular form. For example, the circle

in Example 1 has the more complicated rectangular equation

Several other types of graphs that have simple polar equations are shown below.

Limaçons

Limaçon with Cardioid Dimpled Convex
inner loop (heart-shaped) limaçon limaçon

Rose Curves

petals when is odd, petals when is even 

Rose curve Rose curve Rose curve Rose curve

Circles and Lemniscates

Circle Circle Lemniscate Lemniscate
r 2 � a2 cos 2�r 2 � a2 sin 2�r � a sin �r � a cos �

a

π 0 

π 3   
2 

π    
2 

a 
π 0 

π 3   
2 

π    
2 

a 
π 0 

π 3   
2 

π    
2 

a

π 0 

π 3   
2 

π    
2 

r � a sin n �r � a sin n �r � a cos n �r � a cos n �

a 

n = 2

π 0 

π 3   
2 

π    
2 

a 

n = 5

π 0 

π 3   
2 

π    
2 

a

n = 4

π 0 

π 3   
2 

π    
2 

a

n = 3
π 0 

π 3   
2 

π    
2 

�n � 2�n2nnn

a

b
� 21 <

a

b
< 2

a

b
 �  1

a

b
< 1

π 0 

π 3   
2 

π    
2 

π 0 

π 3   
2 

π    
2 

π 0 

π 3   
2 

π    
2 

π 0 

π 3   
2 

π    
2 

�a > 0, b > 0�r � a ± b sin �r � a ± b cos �,

x2 � � y � 2�2 � 4.

r � 4 sin �

1111572836_0906.qxd  9/29/10  3:53 PM  Page 687

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



688 Chapter 9 Topics in Analytic Geometry

The quick tests for symmetry presented on page 685 are especially useful when
graphing rose curves. Because rose curves have the form or the form

you know that a rose curve will be either symmetric with respect to the
line or symmetric with respect to the polar axis.

Example 4 Analyzing a Rose Curve

Analyze the graph of 

Solution
Type of curve: Rose curve with petals

Symmetry: With respect to the polar axis, the line and the pole

Zeros of r: when 

Using a graphing utility, enter the equation, as shown in Figure 9.75 (with 
You should obtain the graph shown in Figure 9.76.

Figure 9.75 Figure 9.76

Now try Exercise 39. 

Example 5 Analyzing a Lemniscate

Analyze the graph of 

Solution
Type of curve: Lemniscate

Symmetry: With respect to the pole

Zeros of r: when 

Using a graphing utility, enter the equation, as shown in Figure 9.77 (with 
You should obtain the graph shown in Figure 9.78.

Figure 9.77 Figure 9.78

Now try Exercise 45.

−6

−4

6

4

( ) π  
4 

3,  ( ) π  
4 

−3, 

θr2 = 9 sin 2

0 � � � 2�).

� � 0, 
�

2
r � 0

r2 � 9 sin 2�.

−6

−4

6

4

π ( ) −3, 3  
2 

π 

π 

 
2 

(3, 0) 
(3,   ) 

( ) −3, 

θr = 3 cos 2

0 � � � 2�).

� �
�

4
, 

3�

4
r � 0

� �
�

2
,

2n � 4

r � 3 cos 2�.

� � ��2
r � g�cos ��,

r � f�sin ��

What’s Wrong?
You use a graphing utility in
polar mode to confirm the result
in Example 5 and obtain the
graph shown below (with

). What’s wrong?

−12 12

−8

8

0 � � � 2�
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Section 9.6 Graphs of Polar Equations 689

Identifying Types of Polar Graphs In Exercises 7–12,
identify the type of polar graph.

7. 8.

9. 10.

11. 12.

Finding the Equation of a Polar Curve In Exercises
13–16, determine the equation of the polar curve whose
graph is shown.

13. 14.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

15. 16.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

Testing for Symmetry In Exercises 17–24, test for 
symmetry with respect to the polar axis, and
the pole.

17.

18.

19.

20.

21.

22.

23.

24. r2 � 36 sin 2�

r2 � 16 sin 2�

r � 4 csc � cos �

r � 6 sin �

r �
2

1 � cos �

r �
2

1 � sin �

r � 16 cos 3�

r � 5 � 4 cos �

� � �/2,

r � 2 sin 3�r � 2 cos 
�

2

r � 2 sin�3�

2 �r � 2 cos 2�

r � 2 cos�3�

2 �r � cos 4�

r � 2 sin 6�r � 2 cos 4�

−2 2 

1 

π 0 

π 3   
2 

π    
2 

2 

−1 1 −2 2 

1 

π 0 

π 3   
2 

π    
2 

r � 2 � sin �r � 1 � 2 cos �

r � 2 � cos �r � 1 � 2 cos �

r � 2 � sin �r � 1 � 2 sin �

r � 2 � cos �r � 1 � 2 sin �

1 2 

−2 

1 

π 0 

π 3   
2 

π    
2 

−1 −2 1 2 

−2 

1 

π 0 

π 3   
2 

π    
2 

−2

−3

7

3
θr = 1 + 4 cos 

−9

−6

9

6
θr = 6 sin 2

−3

−3

6

3
θr = 3 cos 

−6

−4

6

4
θr2 = 9 cos 2

−9

−10

9

2
θr = 5 − 5 sin 

−6

−4

6

4
θr = 3 cos 2

Vocabulary and Concept Check
In Exercises 1–4, fill in the blank.

1. The equation represents a _______ . 2. The equation represents a _______ .

3. The equation represents a _______ . 4. The equation represents a _______ .

5. How can you test whether the graph of a polar equation is symmetric to the line 

6. Is the graph of symmetric with respect to the line or to the polar axis?

Procedures and Problem Solving

� �
�

2
r � 3 � 4 cos �

� �
�

2
?

r � 1 � sin �r2 � 4 sin 2�

r � 2 cos �r � 2 � cos �

9.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.
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690 Chapter 9 Topics in Analytic Geometry

Sketching the Graph of a Polar Equation In Exercises
25–34, sketch the graph of the polar equation. Use a
graphing utility to verify your graph.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

Analyzing a Polar Graph In Exercises 35–38, identify
and sketch the graph of the polar equation. Identify any
symmetry and zeros of Use a graphing utility to verify
your results.

35. 36.

37. 38.

Analyzing a Special Polar Graph In Exercises 39–52,
use a graphing utility to graph the polar equation.
Describe your viewing window.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

Using a Graphing Utility to Graph a Polar Equation In
Exercises 53–58, use a graphing utility to graph the polar
equation. Find an interval for for which the graph is
traced only once.

53. 54.

55. 56.

57. 58.

Using a Graphing Utility to Graph a Polar Equation In
Exercises 59–62, use a graphing utility to graph the
polar equation and show that the indicated line is an
asymptote of the graph.

Name of Graph Polar Equation Asymptote

59. Conchoid

60. Conchoid

61. Hyperbolic spiral

62. Strophoid

Conclusions
True or False? In Exercises 63 and 64, determine whether
the statement is true or false. Justify your answer.

63. The graph of is a rose curve with five
petals.

64. A rose curve will always have symmetry with respect to
the line 

65. Exploration The graph of is rotated about
the pole through an angle Show that the equation of
the rotated graph is 

66. Exploration Consider the graph of 

(a) Show that when the graph is rotated counterclockwise
radians about the pole, the equation of the

rotated graph is 

(b) Show that when the graph is rotated counterclockwise
radians about the pole, the equation of the rotated

graph is 

(c) Show that when the graph is rotated counterclockwise
radians about the pole, the equation of the

rotated graph is 

Writing an Equation for Special Polar Graphs In Exercises
67 and 68, use the results of Exercises 65 and 66.

67. Write an equation for the limaçon after it
has been rotated through each given angle.

(a) (b) (c) (d)

68. Write an equation for the rose curve after
it has been rotated through each given angle.

(a) (b) (c) (d)

69. Exploration Use a graphing utility to graph the polar
equation for and

Identify each graph.

Cumulative Mixed Review
Finding the Zeros of a Rational Function In Exercises
71–74, find the zeros (if any) of the rational function.

71. 72.

73. 74. f�x� �
x3 � 27
x2 � 4

f �x� � 5 �
3

x � 2

f�x� � 6 �
4

x2 � 4
f�x� �

x2 � 9
x � 1

k � 3.
k � 2,k � 1,k � 0,r � 2 � k sin �

�
2�

3

�

2

�

6

r � 2 sin 2�

3�

2
�

�

2

�

4

r � 2 � sin�

r � f �cos��.
3��2

r � f ��sin��.
�

r � f ��cos��.
��2

r � f �sin��.
r � f �� � 	�.

	.
r � f ���

� � ��2.

r � 10 sin 5�

x � �2r � 2 cos 2� sec�

y � 3r �
3

�

y � 1r � 2 � csc�

x � �1r � 2 � sec�

r2 �
1

�
r2 � 16 sin 2�

r � 3 sin 
5�

2
r � 2 cos 

3�

2

r � 2�1 � 2 sin��r � 3 � 4 cos�

�

r � e��2r � e2�

r � 4 � sec�r � 2 csc� � 6

r � 2 cos�3� � 2�r � 8 sin� cos2�

r2 � 9 sin�r2 � 4 cos 2�

r �
6

2 sin� � 3 cos�
r �

3

sin� � 2 cos�

r � 6 � 4 sin�r � 2�5 � sin��
r � cos 2�r � 8 cos 2�

r � 3 cos 5�r � 7 sin 2�

r � �sin 5�r � 5 cos 3�

r.

r � 3 � 6 cos�r � 4 � 5 sin �

r � 1 � 2 sin �r � 3 � 4 cos �

r � 4�1 � sin��r � 3�1 � cos ��
r � 2 cos�r � 3 sin�

� � �
5�

3
r � 5

70. C A P S T O N E Explain why some polar curves 
have equations that are simpler in polar form than in
rectangular form. Besides a circle, give an example of
a curve that is simpler in polar form than in rectangular
form. Give an example of a curve that is simpler in
rectangular form than in polar form.
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Section 9.7 Polar Equations of Conics 691

Alternative Definition of Conics and Polar Equations
In Sections 9.2 and 9.3, you learned that the rectangular equations of ellipses and 
hyperbolas take simple forms when the origin lies at the center. As it happens, there are
many important applications of conics in which it is more convenient to use one of the
foci as the origin. In this section, you will learn that polar equations of conics take 
simple forms when one of the foci lies at the pole.

To begin, consider the following alternative definition of a conic that uses the 
concept of eccentricity (a measure of the flatness of the conic).

In Figure 9.79, note that for each type of conic, the focus is at the pole.

Ellipse: Parabola: Hyperbola:

Figure 9.79

The benefit of locating a focus of a conic at the pole is that the equation of the conic
becomes simpler.
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9.7 Polar Equations of Conics

What you should learn
● Define conics in terms of 

eccentricities, and write and

graph equations of conics in

polar form.

● Use equations of conics in 

polar form to model real-life

problems.

Why you should learn it
The orbits of planets and satellites

can be modeled by polar equations.

For instance, in Exercise 60 on page

697, you will use a polar equation to

model the orbit of a satellite.

Alternative Definition of a Conic

The locus of a point in the plane that moves such that its distance from a fixed 
point (focus) is in a constant ratio to its distance from a fixed line (directrix) is 
a conic. The constant ratio is the eccentricity of the conic and is denoted by 
Moreover, the conic is an ellipse when a parabola when and 
a hyperbola when (See Figure 9.79.)e > 1.

e � 1,0 < e < 1,
e.

Polar Equations of Conics (See the proof on page 709.)

The graph of a polar equation of the form

1.

or

2.

is a conic, where is the eccentricity and is the distance between the 
focus (pole) and the directrix.

�p�e > 0

r �
ep

1 ± e sin �

r �
ep

1 ± e cos �

Jupiter

Decs 2010/used under license from Shutterstock.com
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692 Chapter 9 Topics in Analytic Geometry

An equation of the form

Vertical directrix

corresponds to a conic with a vertical directrix and symmetry with respect to the polar
axis. An equation of the form

Horizontal directrix

corresponds to a conic with a horizontal directrix and symmetry with respect to the line
Moreover, the converse is also true—that is, any conic with a focus at the pole

and having a horizontal or vertical directrix can be represented by one of the given
equations.

For the ellipse in Figure 9.80, the major axis is horizontal and the vertices lie at
and So, the length of the major axis is To find

the length of the minor axis, you can use the equations and to
conclude that

Ellipse

Because you have 

which implies that 

So, the length of the minor axis is A similar analysis for hyperbolas yields

Hyperbola � a2�e2 � 1�.

 � �ea�2 � a2

 b2 � c2 � a2

2b � 6�5.

�45 � 3�5.b �

b2 � 92�1 � �2
3�2� � 45,

e �
2
3,

 � a2�1 � e2�.

 � a2 � �ea�2

 b2 � a2 � c2

b2 � a2 � c2e � c�a
2a � 18.�r, �� � �3, ��.�r, �� � �15, 0�

� � ��2.

r �
ep

1 ± e sin �

r �
ep

1 ± e cos �

Example 1 Identifying a Conic from Its Equation

Identify the type of conic represented by the equation 

r �
15

3 � 2 cos �
.

Algebraic Solution
To identify the type of conic, rewrite the equation in the
form 

Because you can conclude that the graph is an
ellipse.

Now try Exercise 15.

e �
2
3 < 1,

Divide numerator and
denominator by 3.

 �
5

1 � �2�3� cos �

 r �
15

3 � 2 cos �

r � ep��1 ± e cos ��.

Graphical Solution
Use a graphing utility in polar mode and be sure to use a
square setting, as shown in Figure 9.80.

Figure 9.80

−6

−8

18

8

π 

(15, 0) 

(3,   ) 
θ

r = 
15

3 − 2 cos   

The graph of the conic
appears to be an ellipse.
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Section 9.7 Polar Equations of Conics 693

Example 2 Analyzing the Graph of a Polar Equation

Analyze the graph of the polar equation

Solution
Dividing the numerator and denominator by 3 produces

Because the graph is a hyperbola. The transverse axis of the 
hyperbola lies on the line and the vertices occur at and

Because the length of the transverse axis is 12, you can see that
To find write

So, You can use and to determine that the asymptotes are as
shown in Figure 9.81.

Now try Exercise 27.

In the next example, you are asked to find a polar equation for a specified conic.
To do this, let be the distance between the pole and the directrix.

1. Horizontal directrix above the pole:

2. Horizontal directrix below the pole:

3. Vertical directrix to the right of the pole:

4. Vertical directrix to the left of the pole:

Example 3 Finding the Polar Equation of a Conic

Find the polar equation of the parabola whose focus is the pole and whose 
directrix is the line 

Solution
From Figure 9.82, you can see that the directrix is 
horizontal and above the pole. Moreover, because the
eccentricity of a parabola is and the distance
between the pole and the directrix is you have
the equation

Figure 9.82

Now try Exercise 37.

r �
ep

1 � e sin �
�

3

1 � sin �
.

p � 3,
e � 1

y � 3.

r �
ep

1 � e cos �

r �
ep

1 � e cos �

r �
ep

1 � e sin �

r �
ep

1 � e sin �

p

y � 10 ± 3
4x,bab � 8.

b2 � a2�e2 � 1� � 62	
5

3�
2

� 1� � 64.

b,a � 6.
�r, �� � ��16, 3��2�.

�r, �� � �4, ��2�� � ��2,
e �

5
3 > 1,

r �
32�3

1 � �5�3� sin �
.

r �
32

3 � 5 sin �
.

−6

−3

6

5

(0, 0) 

Directrix 
y = 3 

θ
r = 

3
1 + sin   

−18

−4

24

24

π ( )−16, 3  
2 

π  
2 ( )4,  

θ
r = 

32
3 + 5 sin   

Figure 9.81

Explore the Concept
Try using a graphing
utility in polar mode 
to verify the four 

orientations shown at the left.
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Application
Kepler’s Laws (listed below), named after the German astronomer Johannes Kepler
(1571–1630), can be used to describe the orbits of the planets about the sun.

1. Each planet moves in an elliptical orbit with the sun as a focus.

2. A ray from the sun to the planet sweeps out equal areas of the ellipse in equal times.

3. The square of the period (the time it takes for a planet to orbit the sun) is
proportional to the cube of the mean distance between the planet and the sun.

Although Kepler simply stated these laws on the basis of observation, they were later
validated by Isaac Newton (1642–1727). In fact, Newton was able to show that each
law can be deduced from a set of universal laws of motion and gravitation that 
govern the movement of all heavenly bodies, including comets and satellites. 
This is illustrated in the next example, which involves the comet named after 
the English mathematician and physicist Edmund Halley (1656–1742).

If you use Earth as a reference with a period of 1 year and a distance of 
1 astronomical unit (an astronomical unit is defined as the mean distance between
Earth and the sun, or about 93 million miles), then the proportionality constant in
Kepler’s third law is 1. For example, because Mars has a mean distance to the sun of 

astronomical units, its period is given by

So, the period of Mars is years.

Example 4 Halley’s Comet

Halley’s comet has an elliptical orbit with an eccentricity of The length 
of the major axis of the orbit is approximately 35.88 astronomical units. Find a polar
equation for the orbit. How close does Halley’s comet come to the sun?

Solution
Using a vertical major axis, as shown in Figure 9.83, choose an equation of the form 

Because the vertices of the ellipse occur at and you can determine
the length of the major axis to be the sum of the values of the vertices. That is,

So, and

Using this value of in the equation, you have

where is measured in astronomical units. To find the closest point to the sun (the
focus), substitute into this equation to obtain

Now try Exercise 55.

 r �
1.164

1 � 0.967 sin���2�

 0.59 astronomical units 
 55,000,000 miles.

� � ��2
r

r �
1.164

1 � 0.967 sin�

ep

ep 
 �0.967��1.204� 
 1.164.

p 
 1.204

2a �
0.967p

1 � 0.967
�

0.967p

1 � 0.967

 29.79p 
 35.88.

r-
� � 3��2,� � ��2

r �
ep

1 � e sin �
.

e 
 0.967.

P 
 1.88

d 3 � P2.

Pd 
 1.524

π 0 

π 3   
2 

π    
2 

Not drawn to scale

Sun 

Earth

Halleyís
comet

Figure 9.83

Astronomer

TRBfoto/Photodisc/Jupiter Images
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Section 9.7 Polar Equations of Conics 695

Identifying a Conic In Exercises 5–8, use a graphing
utility to graph the polar equation for (a) 
(b) and (c) Identify the conic for each
equation.

5. 6.

7. 8.

Identifying the Polar Equation of a Conic In Exercises
9–14, match the polar equation with its graph. [The
graphs are labeled (a), (b), (c), (d), (e), and (f ).]

(a) (b)

(c) (d)

(e) (f)

9. 10.

11. 12.

13. 14.

Identifying a Conic from Its Equation In Exercises
15–24, identify the type of conic represented by the
equation. Use a graphing utility to confirm your result.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

Analyzing the Graph of a Polar Equation In Exercises
25–30, identify the type of conic represented by the polar
equation and analyze its graph. Then use a graphing
utility to graph the polar equation.

25. 26.

27. 28.

29. 30. r �
4

1 � 2 cos �
r �

3
�4 � 2 cos �

r �
12

2 � cos �
r �

14

14 � 17 sin �

r �
�1

2 � 4 sin �
r �

�5

1 � sin �

r �
10

3 � 9 sin �
r �

3

4 � 8 cos �

r �
5

�1 � 2 cos �
r �

6

2 � sin �

r �
9

3 � 2 cos �
r �

8

4 � 3 sin �

r �
7

7 � sin �
r �

4

4 � cos �

r �
7

1 � sin �
r �

3

1 � cos �

r �
4

1 � sin �
r �

3

1 � 2 sin �

r �
4

1 � 3 sin �
r �

3
2 � cos �

r �
3

2 � cos �
r �

4

1 � cos �

−3

−5 4

3

−6

−6

6

2

−6

−2

6

6

−2

−2

4

2

−9

−6

9

6

−9

−9

9

3

r �
2e

1 � e sin �
r �

2e

1 � e sin �

r �
2e

1 � e cos �
r �

2e

1 � e cos �

e � 1.5.e � 0.5,
e � 1,

Vocabulary and Concept Check
1. Fill in the blank: The locus of a point in the plane that moves such that its 

distance from a fixed point (focus) is in a constant ratio to its distance from 
a fixed line (directrix) is a _______ .

2. Match the conic with its eccentricity.

(a) (i) ellipse

(b) (ii) hyperbola

(c) (iii) parabola

3. A conic has a polar equation of the form Is the directrix vertical
or horizontal?

4. A conic with a horizontal directrix has a polar equation of the form 

Is the directrix above or below the pole?

Procedures and Problem Solving

r �
ep

1 � e sin �
.

r �
ep

1 � e cos �
.

e > 1

e � 1

0 < e < 1

9.7 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.
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Graphing a Rotated Conic In Exercises 31–36, use a
graphing utility to graph the rotated conic.

31. (See Exercise 15.)

32. (See Exercise 18.)

33. (See Exercise 17.)

34. (See Exercise 20.)

35. (See Exercise 19.)

36. (See Exercise 22.)

Finding the Polar Equation of a Conic In Exercises
37–52, find a polar equation of the conic with its focus at
the pole.

Conic Eccentricity Directrix

37. Parabola

38. Parabola

39. Ellipse

40. Ellipse

41. Hyperbola

42. Hyperbola

Conic Vertex or Vertices

43. Parabola

44. Parabola

45. Parabola

46. Parabola

47. Ellipse

48. Ellipse

49. Ellipse 

50. Hyperbola

51. Hyperbola

52. Hyperbola

53. Astronomy The planets travel in elliptical orbits with
the sun at one focus. Assume that the focus is at the
pole, the major axis lies on the polar axis, and the length
of the major axis is (see figure). Show that the polar
equation of the orbit of a planet is

where is the eccentricity.

54. Astronomy Use the result of Exercise 53 to show that
the minimum distance (perihelion) from the sun to a
planet is and that the maximum distance
(aphelion) is 

Astronomy In Exercises 55–58, use the results of
Exercises 53 and 54 to find the polar equation of the orbit
of the planet and the perihelion and aphelion distances.

55. Earth

56. Mercury

57. Venus

58. Jupiter

59. Astronomy Use the results of Exercises 53 and 54,
where for the planet Neptune, kilometers
and and for the dwarf planet Pluto,

kilometers and 

(a) Find the polar equation of the orbit of each planet.

(b) Find the perihelion and aphelion distances for each
planet.

(c) Use a graphing utility to graph both Neptune’s and
Pluto’s equations of orbit in the same viewing 
window.

(d) Is Pluto ever closer to the sun than Neptune? Until
recently, Pluto was considered the ninth planet.
Why was Pluto called the ninth planet and Neptune
the eighth planet?

(e) Do the orbits of Neptune and Pluto intersect? Will
Neptune and Pluto ever collide? Why or why not?

e � 0.2488.a � 5.906 � 109
e � 0.0086

a � 4.498 � 109

e � 0.0484a � 7.7841 � 108 kilometers,

e � 0.0068a � 6.7283 � 107 miles,

e � 0.2056a � 3.5983 � 107 miles,

e � 0.0167a � 9.2956 � 107 miles,

r � a�1 � e�.
r � a�1 � e�

θ 
r

a

Sun 

Planet 

0

π    
2 

e

r �
�1 � e2�a

1 � e cos�

2a


4, 
�

2�, 
1, 
�

2�
�2, 0�, �8, 0�


1, 
3�

2 �, 
9, 
3�

2 �
�20, 0�, �4, ��


2, 
�

2�, 
4, 
3�

2 �
�2, 0�, �10, ��


10, 
�

2�
�5, ��
�8, 0�


1, �
�

2�

x � �1e �
3
2

x � 1e � 2

y � �4e �
3
4

y � 1e �
1
2

y � �4e � 1

x � �1e � 1

r �
5

�1 � 2 cos�� � 2��3�

r �
8

4 � 3 sin�� � ��6�

r �
9

3 � 2 cos�� � ��2�

r �
4

4 � cos�� � 3��4�

r �
7

7 � sin�� � ��3�

r �
3

1 � cos�� � ��4�
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60. (p. 691) On November
27, 1963, the United States launched a
satellite named Explorer 18. Its low and
high points above the surface of Earth were
about 119 miles and 122,800 miles,
respectively (see figure). The center of
Earth is at one focus of the orbit.

(a) Find the polar equation of the orbit (assume the
radius of Earth is 4000 miles).

(b) Find the distance between the surface of Earth  and
the satellite when 

(c) Find the distance between the surface of Earth and
the satellite when 

Conclusions
True or False? In Exercises 61– 64, determine whether
the statement is true or false. Justify your answer.

61. The graph of has a horizontal
directrix above the pole.

62. The conic represented by the following equation is an
ellipse.

63. For values of and the graphs of the
following equations are the same.

and

64. The graph of can be obtained 

by rotating the graph of about the pole.

65. Verifying a Polar Equation Show that the polar 
equation of the ellipse

is

66. Verifying a Polar Equation Show that the polar 
equation of the hyperbola

is

Writing a Polar Equation In Exercises 67–72, use the
results of Exercises 65 and 66 to write the polar form of
the equation of the conic.

67. 68.

69. 70.

71. Hyperbola One focus:

Vertices:

72. Ellipse One focus:

Vertices:

73. Exploration Consider the polar equation 

(a) Identify the conic without graphing the equation.

(b) Without graphing the following polar equations,
describe how each differs from the given polar
equation. Use a graphing utility to verify your results.

74. Exploration The equation

is the equation of an ellipse with What
happens to the lengths of both the major axis and the
minor axis when the value of remains fixed and the
value of changes? Use an example to explain your 
reasoning.

75. Think About It What conic does the polar equation
given by represent?

Cumulative Mixed Review
Evaluating a Trigonometric Expression In Exercises
77–80, find the value of the trigonometric function 
given that and are in Quadrant IV and 
and 

77. 78.

79. 80. cos�u � v�sin�u � v�
sin�u � v�cos�u � v�

cos v � 1��2.
sin u � �3

5vu

r � a sin � � b cos �

p
e

0 < e < 1.

r �
ep

1 ± e sin �

r �
4

1 � 0.4 cos �
,  r �

4
1 � 0.4 sin �

r �
4

1 � 0.4 cos �
.

�5, 0�, �5, ��
�4, 0�

�4, 0�, �4, ��
�5, 0�

x2

36
�

y2

4
� 1

x2

25
�

y2

16
� 1

x2

9
�

y2

16
� 1

x2

169
�

y2

144
� 1

r2 �
�b2

1 � e2 cos2�
.

x2

a2
�

y2

b2
� 1

r2 �
b2

1 � e2 cos2�
.

x2

a2
�

y2

b2
� 1

r �
5

1 � sin �

r �
5

1 � sin�� � ���4��

r �
e��x�

1 � e cos �
r �

ex
1 � e cos �

0 	 � 	 2�,e > 1

r2 �
16

9 � 4 cos
� �
�

4�

r � 4���3 � 3 sin ��

� � 30
.

� � 60
.

r

Earth 

Not drawn to scale

60°

a

0

π    
2 Explorer 18

76. C A P S T O N E In your own words, define the term
eccentricity and explain how it can be used to classify
conics. Then explain how you can use the values of 
and to determine whether a polar equation of the form

represents an ellipse, a parabola, or a hyperbola.

r �
a

b � c sin �

c
b

Decs 2010/used under license from Shutterstock.com
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9 Chapter Summary

What did you learn? Explanation and Examples Review 
Exercises

9.1

Recognize a conic as the 
intersection of a plane and 
a double-napped cone (p. 636).

In the formation of the four basic conics, the intersecting
plane does not pass through the vertex of the cone. (See
Figure 9.1.) When the plane does pass through the vertex,
the resulting figure is a degenerate conic, such as a point or
a line. (See Figure 9.2.)

1, 2

Write equations of circles in 
standard form (p. 637).

The standard form of the equation of a circle with center at
is 

The standard form of the equation of a circle whose center
is the origin, is x2 � y2 � r2.�h, k� � �0, 0�,

�x � h�2 � �y � k�2 � r 2.(h, k)
3–14

Write equations of parabolas in
standard form (p. 639).

The standard form of the equation of a parabola with vertex
at is as follows.

Vertical axis
Horizontal axis�y � k�2 � 4p�x � h�, p � 0

�x � h�2 � 4p�y � k�, p � 0
�h, k�

15–24

Use the reflective property of
parabolas to solve real-life 
problems (p. 641).

The tangent line to a parabola at a point makes equal
angles with (1) the line passing through and the focus, and
(2) the axis of the parabola. (See Figure 9.13.)

P
P

25, 26

9.2

Write equations of ellipses in 
standard form (p. 647). Horizontal major axis

Vertical major axis
�x � h�2

b2 �
� y � k�2

a2 � 1

�x � h�2

a2 �
� y � k�2

b2 � 1
27–38

Use properties of ellipses to model
and solve real-life problems 
(p. 651).

The properties of ellipses can be used to find the greatest
and smallest distances from Earth’s center to the moon’s
center. (See Example 5.)

39, 40

Find eccentricities of ellipses 
(p. 652).

The eccentricity of an ellipse is given by e �
c
a

.e 41, 42

9.3

Write equations of hyperbolas in
standard form (p. 656). Horizontal transverse axis

Vertical transverse axis
� y � k�2

a2 �
�x � h�2

b2 � 1

�x � h�2

a2 �
� y � k�2

b2 � 1
43– 46

Find asymptotes of and graph
hyperbolas (p. 658).

Horizontal transverse axis

Vertical transverse axisy � k ±
a
b

�x � h�

y � k ±
b
a

�x � h�
47–52

Use properties of hyperbolas to
solve real-life problems (p. 661).

The properties of hyperbolas can be used in radar and other
detection systems. (See Example 5.)

53, 54

Classify conics from their general
equations (p. 662).

The graph of is
• a circle when with 
• a parabola when with or (but not both).
• an ellipse when 
• a hyperbola when AC < 0.

AC > 0.
C � 0A � 0AC � 0,

A � 0.A � C,
Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

55–58

Rotate the coordinate axes to
eliminate the term in equations
of conics (p. 663).

xy-
The equation can
be rewritten as 
by rotating the coordinate axes through an angle where
cot 2� � �A � C��B.

�,
A� �x� �2 � C� �y� �2 � D�x� � E�y� � F� � 0

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

59–62
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What did you learn? Explanation and Examples Review 
Exercises

9.4

Evaluate sets of parametric 
equations for given values of 
the parameter (p. 669).

If and are continuous functions of on an interval then
the set of ordered pairs is a plane curve The
equations and are parametric equations 
for and is the parameter.tC,

y � g�t�x � f �t�
C.� f �t�, g�t��

I,tgf

63, 64

Graph curves that are represented
by sets of parametric equations
(p. 670), and rewrite sets of 
parametric equations as single
rectangular equations by eliminating
the parameter (p. 672).

One way to sketch a curve represented by parametric 
equations is to plot points in the plane. Each set of 
coordinates is determined from a value chosen for the
parameter 
To eliminate the parameter in a pair of parametric equations,
solve for in one equation, and substitute that value of into
the other equation. The result is the corresponding rectangular
equation.

tt

t.
�x, y�

xy-

65–82

Find sets of parametric equations
for graphs (p. 673).

When finding a set of parametric equations for a given graph,
remember that the parametric equations are not unique.

83–94

9.5

Plot points and find multiple 
representations of points in the
polar coordinate system (p. 677).

r =
 dire

cte
d dista

nce

 
 

P = (r,   )

O
= directed angle

Polar axis
θ

θ

95–100

Convert points from rectangular
to polar form and vice versa 
(p. 679).

The polar coordinates are related to the rectangular
coordinates as follows.

Polar-to-Rectangular:

Rectangular-to-Polar: r 2 � x2 � y2tan � �
y
x
,

y � r sin �x � r cos �,

�x, y�
�r, ��

101–110

Convert equations from 
rectangular to polar form and 
vice versa (p. 680).

To convert a rectangular equation to polar form, replace 
by and by Converting a polar equation to
rectangular form is more complex.

r sin �.yr cos �
x

111–126

9.6

Graph polar equations by 
point plotting (p. 683), and use
symmetry and zeros as sketching
aids (p. 684).

The graph of a polar equation is symmetric with respect 
to the following when the given substitution yields an 
equivalent equation.

1. Line Replace by or 

2. Polar axis: Replace by or 

3. Pole: Replace by or ��r, ��.�r, � � ���r, ��
��r, � � ��.�r, ����r, ��

��r, ���.�r, � � ���r, ��� � ��2: 127–140

Recognize special polar graphs 
(p. 687).

Several types of graphs, such as limaçons, rose curves,
circles, and lemniscates, have equations that are simpler in
polar form than in rectangular form. (See page 687.)

133–140

9.7

Define conics in terms of 
eccentricities, and write and
graph equations of conics in 
polar form (p. 691).

The eccentricity of a conic is denoted by The conic is an
ellipse when a parabola when and a 
hyperbola when The graph of a polar equation of the
form

1. or 2.

is a conic, where is the eccentricity and is the 
distance between the focus (pole) and the directrix.

�p�e > 0

r � �ep���1 ± e sin ��r � �ep���1 ± e cos ��

e > 1.
e � 1,0 < e < 1,

e.

141–150

Use equations of conics in polar
form to model real-life problems
(p. 694).

An equation of a conic in polar form can be used to model
the orbit of Halley’s comet. (See Example 4.) 151, 152
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700 Chapter 9 Topics in Analytic Geometry

9 Review Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.

Forming a Conic Section In Exercises 1 and 2, state the
type of conic formed by the intersection of the plane and
the double-napped cone.

1. 2.

Finding the Standard Equation of a Circle In Exercises
3–6, find the standard form of the equation of the circle
with the given characteristics.

3. Center at origin; point on the circle:

4. Center at origin; point on the circle:

5. Endpoints of a diameter: and 

6. Endpoints of a diameter: and 

Writing the Equation of a Circle in Standard Form In
Exercises 7–10, write the equation of the circle in
standard form. Then identify its center and radius.

7. 8.

9.

10.

Sketching a Circle In Exercises 11 and 12, sketch the
circle. Identify its center and radius.

11.

12.

Finding the Intercepts of a Circle In Exercises 13 and
14, find the and intercepts of the graph of the circle.

13.

14.

Finding the Vertex, Focus, and Directrix of a Parabola In
Exercises 15–18, find the vertex, focus, and directrix 
of the parabola, and sketch its graph. 

15. 16.

17. 18.

Finding the Standard Equation of a Parabola In
Exercises 19–22, find the standard form of the equation
of the parabola with the given characteristics.

19. Vertex: 20. Vertex:

Focus: Focus:

21. 22.

Finding the Tangent Line at a Point on a Parabola In
Exercises 23 and 24, find an equation of the tangent 
line to the parabola at the given point and find the 

intercept of the line.

23. 24.

25. Architecture A parabolic archway (see figure) is 
12 meters high at the vertex. At a height of 10 meters,
the width of the archway is 8 meters. How wide is the
archway at ground level?

Figure for 25 Figure for 26

26. Architecture A church window (see figure) is bounded
on top by a parabola and below by the arc of a circle.

(a) Find equations of the parabola and the circle.

(b) Use a graphing utility to create a table showing the
vertical distances between the circle and the 
parabola for various values of .

Using the Standard Equation of an Ellipse In Exercises
27–30, find the center, vertices, foci, and eccentricity of
the ellipse and sketch its graph. Use a graphing utility to
verify your graph.

27.

28.

29.

30.
�x � 5�2

1
�

�y � 3�2

36
� 1

�x � 1�2

25
�

�y � 2�2

49
� 1

x2

9
�

y2

8
� 1

x2

4
�

y2

16
� 1

9.2

x 0 1 2 3 4

d

x
d

4 ft 

8 ft 

8 ft 

d

x

y

x 

y 

(0, 12) 
(−4, 10) (4, 10) 

��8, �4�y2 � �2x,�2, �2�x2 � �2y,

x-

−5

−5 25

15

(0, 5) (6, 0) 

−14

−20 10

6

(0, 0) 

(−6, 4)

�0, 0��4, 0�
�2, 0��0, 0�

1
4 y � 8x2 � 01

2 y2 � 18x � 0

y � �
1
8x24x � y2 � 0

�x � 5�2 � �y � 6�2 � 27

�x � 3�2 � �y � 1�2 � 7

y-x-

x2 � y2 � 8x � 10y � 8 � 0

x2 � y2 � 4x � 6y � 3 � 0

4x2 � 4y2 � 32x � 24y � 51 � 0

16x2 � 16y2 � 16x � 24y � 3 � 0

3
4x2 �

3
4y2 � 11

2x2 �
1
2y2 � 18

�6, �5���2, 3�
�5, 6���1, 2�

�8, �15�
��3, �4�

9.1
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Review Exercises 701

Using the Standard Equation of an Ellipse In Exercises
31–34, (a) find the standard form of the equation of the
ellipse, (b) find the center, vertices, foci, and eccentricity
of the ellipse, and (c) sketch the ellipse. Use a graphing
utility to verify your graph.

31.

32.

33.

34.

Finding the Standard Equation of an Ellipse In
Exercises 35–38, find the standard form of the equation
of the ellipse with the given characteristics.

35. Vertices: foci:

36. Vertices: passes through the point 

37. Vertices: foci:

38. Vertices: foci:

39. Architecture A semielliptical archway is to be
formed over the entrance to an estate. The arch is to be
set on pillars that are 10 feet apart and is to have a
height (atop the pillars) of 4 feet. Where should the foci
be placed in order to sketch the arch?

40. Architecture You are building a wading pool that is in
the shape of an ellipse. Your plans give an equation for
the elliptical shape of the pool measured in feet as 

Find the longest distance across the pool, the shortest
distance, and the distance between the foci.

41. Astronomy Saturn moves in an elliptical orbit with
the sun at one focus. The least distance and the greatest
distance of the planet from the sun are 
and kilometers, respectively. Find the
eccentricity of the orbit, defined by 

42. Astronomy Mercury moves in an elliptical orbit with
the sun at one focus. The eccentricity of Mercury’s orbit
is The length of the major axis is 
72 million miles. Find the standard equation of
Mercury’s orbit. Place the center of the orbit at the 
origin and the major axis on the -axis.

Finding the Standard Equation of a Hyperbola In
Exercises 43– 46, find the standard form of the equation
of the hyperbola with the given characteristics.

43. Vertices: foci:

44. Vertices: foci:

45. Foci: asymptotes:

46. Foci: asymptotes:

Sketching a Hyperbola In Exercises 47–52, (a) find the
standard form of the equation of the hyperbola, (b) find
the center, vertices, foci, and eccentricity of the hyperbola,
and (c) sketch the hyperbola.

47. 48.

49.

50.

51.

52.

53. Marine Navigation Radio transmitting station A is
located 200 miles east of transmitting station B. A ship
is in an area to the north and 40 miles west of station A.
Synchronized radio pulses transmitted to the ship at
186,000 miles per second by the two stations are received
0.0005 second sooner from station A than from station
B. How far north is the ship?

54. Physics Two of your friends live 4 miles apart on the
same “east-west” street, and you live halfway between
them. You are having a three-way phone conversation
when you hear an explosion. Six seconds later your
friend to the east hears the explosion, and your friend to
the west hears it 8 seconds after you do. Find equations
of two hyperbolas that would locate the explosion.
(Assume that the coordinate system is measured in feet
and that sound travels at 1100 feet per second.)

Classifying a Conic from a General Equation In
Exercises 55–58, classify the graph of the equation as a
circle, a parabola, an ellipse, or a hyperbola.

55.

56.

57.

58.

Rotation of Axes In Exercises 59–62, rotate the axes to
eliminate the -term in the equation. Then write the
equation in standard form. Sketch the graph of the
resulting equation, showing both sets of axes.

59. 60.

61.

62.

Sketching the Graph of Parametric Equations In
Exercises 63 and 64, complete the table for the set of
parametric equations. Plot the points and sketch a
graph of the parametric equations.

63.

y � 7 � 4t

x � 3t � 2

�x, y�

9.4

4x2 � 8xy � 4y2 � 7�2 x � 9�2y � 0

5x2 � 2xy � 5y2 � 12 � 0

x2 � 4xy � y2 � 9 � 0xy � 3 � 0

xy

�4y2 � 5x � 3y � 7 � 0

5x2 � 2y2 � 10x � 4y � 17 � 0

4x2 � 4y2 � 4x � 8y � 11 � 0

3x2 � 2y2 � 12x � 12y � 29 � 0

9x2 � y2 � 72x � 8y � 119 � 0

y2 � 4x2 � 2y � 48x � 59 � 0

�4x2 � 25y2 � 8x � 150y � 121 � 0

9x2 � 16y2 � 18x � 32y � 151 � 0

x2 � y2 �
9
45y2 � 4x2 � 20

y � ±2�x � 3��3, ±2�;
y � ±2�x � 4��0, 0�, �8, 0�;

�0, ±2��0, ±1�;
�±6, 0��±4, 0�;

9.3

x

e � 0.2056.

e � c�a.
1.5045 	 109

1.3495 	 109

x2

324
�

y2

196
� 1.

�2, 1�, �2, 3��2, 0�, �2, 4�;
�0, 0�, �4, 0���3, 0�, �7, 0�;

�2, 2��0, ±6�;
�±4, 0��±5, 0�;

x2 � 20y2 � 5x � 120y � 185 � 0

3x2 � 8y2 � 12x � 112y � 403 � 0

4x2 � 25y2 � 16x � 150y � 141 � 0

16x2 � 9y2 � 32x � 72y � 16 � 0

t �2 �1 0 1 2 3

x

y
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702 Chapter 9 Topics in Analytic Geometry

64.

Sketching a Plane Curve and Eliminating the Parameter
In Exercises 65–70, sketch the curve represented by the
parametric equations (indicate the orientation of the
curve). Then eliminate the parameter and write the 
corresponding rectangular equation whose graph represents
the curve. Adjust the domain of the resulting rectangular
equation, if necessary.

65. 66.

67. 68.

69. 70.

Using a Graphing Utility in Parametric Mode In
Exercises 71–82, use a graphing utility to graph the
curve represented by the parametric equations.

71. , 72. ,

73. , 74. ,

75. ,

76. ,

77. ,

78. ,

79. , 80. ,

81. 82.

Finding Parametric Equations for a Given Graph In
Exercises 83–86, find a set of parametric equations to
represent the graph of the given rectangular equation
using the parameters (a) and (b) 

83. 84.

85. 86.

Finding Parametric Equations for a Line In Exercises
87–90, find a set of parametric equations for the line that
passes through the given points. (There are many correct
answers.)

87. 88.

89. 90.

Athletics In Exercises 91–94, the quarterback of a 
football team releases a pass at a height of 7 feet above
the playing field, and the football is caught at a height 
of 4 feet, 30 yards directly downfield. The pass is released
at an angle of with the horizontal. The parametric
equations for the path of the football are given by

and where is the
speed of the football (in feet per second) when it is
released.

91. Find the speed of the football when it is released.

92. Write a set of parametric equations for the path of the
ball.

93. Use a graphing utility to graph the path of the ball and
approximate its maximum height.

94. Find the time the receiver has to position himself after
the quarterback releases the ball.

Plotting Points in the Polar Coordinate System In
Exercises 95–100, plot the point given in polar
coordinates and find three additional polar representa-
tions of the point, using 

95. 96.

97. 98.

99. 100.

Polar-to-Rectangular Conversion In Exercises 101–106,
plot the point given in polar coordinates and find the
corresponding rectangular coordinates for the point.

101. 102.

103. 104.

105. 106.

Rectangular-to-Polar Conversion In Exercises 107–110,
plot the point given in rectangular coordinates and 
find two sets of polar coordinates for the point for

107. 108.

109. 110.

Converting a Rectangular Equation to Polar Form In
Exercises 111–118, convert the rectangular equation to
polar form.

111. 112.

113. 114.

115. 116. xy � �2xy � 5

x2 � y2 � 6y � 0x2 � y2 � 4x � 0

x2 � y2 � 48x2 � y2 � 81

��3, ��3��5, �5�
��3, 4��0, �9�

0 
 � < 2�.

	0, 
�

2
	3, 
3�

4 

	�1, 

11�

6 
	2, �
5�

3 

	�4, 

2�

3 
	5, �
7�

6 


��3, 2.62���7, 4.19�

	1, 
5�

6 
	�2, �
11�

6 

	�5, �

�

3
	2, 
�

4

�2� < � < 2�.

9.5

v0y � 7 � 0.57v0 t � 16t2,x � 0.82v0t

35�

�0, 0�, �5
2, 6���1, 6�, �10, 0�

�2, �1�, �2, 4��3, 5�, �8, 5�

y � 2x3 � 5xy � x2 � 2

y � 10 � xy � 6x � 2

t � 1 � x.t � x

y � 2 � 5 sin �y � 6 sin �

x � 3 � 3 cos �x � 6 cos �

y � 2x � ty � tx � 3

y � t2x � t � 4

y � 2 � 3tx � 1 � 4t

y � �tx � t2

y � 4tx � 2t

y �
1

t
x � ty � tx �

1

t

y � 3�tx � ty � tx � 3�t

y � t2 � 1y �
1
2

t2

x �
4
t

x � t3

y � t2y � 4t2 � 3

x � ln 4tx � t2 � 2

y � 2 � 3ty � 4t

x � 4t � 1x � 2t

y � 8 � t
t 0 1 2 3 4

x

y

x � �t
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Review Exercises 703

117. 118.

Converting a Polar Equation to Rectangular Form In
Exercises 119–126, convert the polar equation to
rectangular form.

119. 120.

121. 122.

123. 124.

125. 126.

Sketching the Graph of a Polar Equation In Exercises
127–132, sketch the graph of the polar equation by hand.
Then use a graphing utility to verify your graph.

127. 128.

129. 130.

131. 132.

Analyzing a Polar Graph In Exercises 133–140, identify
and then sketch the graph of the polar equation. Identify
any symmetry and zeros of Use a graphing utility to
verify your graph.

133. 134.

135. 136.

137. 138.

139.

140.

Identifying a Conic from Its Equation In Exercises
141–146, identify the type of conic represented by the
equation. Then use a graphing utility to graph the polar
equation.

141. 142.

143. 144.

145. 146.

Finding the Polar Equation of a Conic In Exercises
147–150, find a polar equation of the conic with its focus
at the pole.

147. Parabola, vertex:

148. Parabola, vertex:

149. Ellipse, vertices:

150. Hyperbola, vertices:

151. Astronomy The planet Mars has an elliptical 
orbit with an eccentricity of The length 
of the major axis of the orbit is approximately 
3.05 astronomical units. Find a polar equation for the
orbit and its perihelion and aphelion distances.

152. Astronomy An asteroid takes a parabolic path with
Earth as its focus. It is about 6,000,000 miles from
Earth at its closest approach. Write the polar equation
of the path of the asteroid with its vertex at

Find the distance between the asteroid and
Earth when 

Conclusions
True or False? In Exercises 153 and 154, determine
whether the statement is true or false. Justify your answer.

153. The graph of represents the equation of
a hyperbola.

154. There is only one set of parametric equations that 
represents the line 

Writing In Exercises 155 and 156, an equation and four
variations are given. In your own words, describe how
the graph of each of the variations differs from the graph
of the original equation.

155.

(a) (b)

(c) (d)

156.

(a) (b)

(c) (d)

157. The graph of the parametric equations and
is shown in the figure. Would the graph

change for the equations and
If so, how would it change?

Figure for 157 Figure for 158

158. The path of a moving object is modeled by the 
parametric equations and 
where is time (see figure). How would the path
change for each of the following?

(a)

(b) y � 3 sin tx � 5 cos t,

y � 3 sin 2tx � 4 cos 2t,

t
y � 3 sin t,x � 4 cos t

−6

−4

6

4

−6

−4

6

4

y � 3 tan��t�?
x � 2 sec��t�

y � 3 tan t
x � 2 sec t

�x � 3�2

4
�

y2

9
� 1

x2

4
�

y2

25
� 1

x 2

4
�

y 2

4
� 1

x 2

9
�

y2

4
� 1

x2

4
�

y2

9
� 1

y 2 � 4xy2 � �8x

y 2 � 8�x � 1��y � 2�2 � 8x

y2 � 8x

y � 3 � 2x.

1
4 x2 � y4 � 1

� � ���3.
� � ���2.

e � 0.093.

�1, 0�, �7, 0�
�5, 0�, �1, ��
�2, ��2�
�2, ��

r �
3

4 � 4 cos �
r �

5
6 � 2 sin �

r �
6

�1 � 4 cos �
r �

4
5 � 3 cos �

r �
6

1 � sin �
r �

1
1 � 2 sin �

9.7

r2 � cos 2�

r2 � 5 sin 2�

r � cos 5�r � �3 cos 2�

r � 2 � 6 cos �r � 3 � 5 sin �

r � 1 � 4 sin �r � 5 � 4 cos �

r.

r � 2 sin �r � 5 cos �

� � �
5�

6
� �

�

2

r � 3r � 5

9.6

� �
4�

3
� �

5�

6

r2 � sin �r2 � cos 2�

r � 8 sin �r � 3 cos �

r � 12r � 5

2x2 � 3y2 � 14x2 � y2 � 1
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704 Chapter 9 Topics in Analytic Geometry

9 Chapter Test See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.

Take this test as you would take a test in class. After you are finished, check your
work against the answers in the back of the book.

In Exercises 1–3, graph the conic and identify any vertices and foci.

1. 2. 3.

4. Find the standard form of the equation of the parabola with focus and 
directrix and sketch the parabola.

5. Find the standard form of the equation of the ellipse shown at the right.

6. Find the standard form of the equation of the hyperbola with vertices and
asymptotes 

7. Use a graphing utility to graph the conic Describe your viewing 

window.

8. (a) Determine the number of degrees the axis must be rotated to eliminate the 
-term of the conic 

(b) Graph the conic in part (a) and use a graphing utility to confirm your result.

In Exercises 9–11, sketch the curve represented by the parametric equations. Then
eliminate the parameter and write the corresponding rectangular equation whose
graph represents the curve.

9. 10. 11.

In Exercises 12–14, find a set of parametric equations to represent the graph of the
given rectangular equation using the parameters (a) and (b) 

12. 13. 14.

15. Convert the polar coordinates to rectangular form.

16. Convert the rectangular coordinates to polar form and find two additional
polar representations of this point. (There are many correct answers.)

17. Convert the rectangular equation to polar form.

18. Convert the polar equation to rectangular form.

In Exercises 19–21, identify the conic represented by the polar equation 
algebraically. Then use a graphing utility to graph the polar equation.

19. 20. 21.

22. Find a polar equation of an ellipse with its focus at the pole, an eccentricity
of and directrix at 

23. Find a polar equation of a hyperbola with its focus at the pole, an eccentricity of
and directrix at 

24. For the polar equation find the maximum value of and any zeros
of Verify your answers numerically.r.

�r�r � 8 cos 3�,

y � 2.e �
5
4,

y � 4.e �
1
4,

r �
4

2 � 3 sin �
r �

1
1 � cos �

r � 2 � 3 sin �

r � 2 sin �

x2 � y2 � 3x � 0

�2, �2�

	�2, 
5�

6 


y � x2 � 10y �
3
x

4x � y � 7

t � 2 � x.t � x

y � 2 sin �y �
t
4

y �
1
2

t � 1

x � 2 � 3 cos �x � �t2 � 2x � t2 � 6

x2 � 6xy � y2 � 6 � 0.xy

x2 �
y2

4
� 1.

y � ±3
2x.

�0, ±3�

x � 4,
�8, �2�

x2 � 4y2 � 4x � 0y2 � 4x � 4 � 0y2 � 8x � 0
−19

−5

5

11

(−10, 3)

(−2, 3)
(−6, 10)

(−6, −4)

Figure for 5
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Cumulative Test for Chapters 7–9 705

7–9 Cumulative Test See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.

Take this test to review the material in Chapters 7–9. After you are finished, check
your work against the answers in the back of the book.

In Exercises 1–4, use any method to solve the system of equations.

1. 2.

3. 4.

In Exercises 5–8, perform the matrix operations given

and

5. 6. 7. 8.

9. Find (a) the inverse of (if it exists) and (b) the determinant of 

10. Use a determinant to find the area of the triangle with vertices and

11. Write the first five terms of each sequence (Assume that begins with 1.)

(a) (b)

In Exercises 12–15, find the sum. Use a graphing utility to verify your result.

12. 13. 14. 15.

In Exercises 16–18, find the sum of the infinite geometric series.

16. 17. 18.

19. Find each binomial coefficient.

(a) (b)

In Exercises 20–23, use the Binomial Theorem to expand and simplify the 
expression.

20. 21.

22. 23.

In Exercises 24–27, find the number of distinguishable permutations of the group
of letters.

24. L, I, O, N, S 25. S, E, A, B, E, E, S

26. B, O, B, B, L, E, H, E, A, D 27. I, N, T, U, I, T, I, O, N

�3a � 4b�8�x � 2y�6

�2x � y2�5�x � 3�4

	20
2 
20C18

4 � 2 � 1 �
1
2

�
1
4

� .  .  .�
�

n�1
5��0.02�n�

�

n�0
3	�

3
5


n

�
50

n�0
100	�

1
2


n

�
10

n�0
9	3

4

n

�
4

k�1

2
k2 � 4�

6

k�1
�7k � 2�

an � 3�2�n�1an �
��1�n�1

2n � 3

nan.

�8, 10�.
�6, 2�,�0, 0�,

A � 

1
3

�5

2
7

�7

�1
�10
�15�

A.A

BAAB5A � 3B3A � 2B

B � 

�1

6
0

5
�3

4

2
3

�2�.A � 

�3

2
�4

0
4
8

�4
5
1�

� x
5x

�2x

�

�

�

4y
2y
8y

�

�

3z
z

�

�

�

5
1

30�
2x �

�4x �

x �

3y �

y �

3y �

z �

2z �

3z �

13

�6

12

�2x �

x �

y2

y
� 0
� 4��x � 3y �

4x � 2y �

5

10
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706 Chapter 9 Topics in Analytic Geometry

In Exercises 28–31, identify the conic and sketch its graph.

28. 29.

30. 31.

In Exercises 32–34, find the standard form of the equation of the conic.

32. 33. 34.

35. Use a graphing utility to graph Determine the angle 
through which the axes are rotated.

In Exercises 36–38, (a) sketch the curve represented by the parametric equations,
(b) use a graphing utility to verify your graph, and (c) eliminate the parameter and
write the corresponding rectangular equation whose graph represents the curve.
Adjust the domain of the resulting rectangular equation, if necessary.

36. 37. 38.

In Exercises 39–42, find a set of parametric equations to represent the graph of

the given rectangular equation using the parameters (a) and (b) 

39. 40. 41. 42.

In Exercises 43– 46, plot the point given in polar coordinates and find three 
additional polar representations of the point, using 

43. 44. 45. 46.

47. Convert the rectangular equation to polar form.

48. Convert the polar equation to rectangular form.

49. Convert the polar equation to rectangular form.

In Exercises 50–52, identify the type of polar graph represented by the polar
equation. Then use a graphing utility to graph the polar equation.

50. 51. 52.

53. The salary for the first year of a job is $32,500. During the next 14 years, the salary
increases by 5% each year. Determine the total compensation over the 15-year period.

54. On a game show, the digits 3, 4, and 5 must be arranged in the proper order to form
the price of an appliance. If they are arranged correctly, then the contestant wins
the appliance. What is the probability of winning if the contestant knows that the
price is at least $400?

55. A parabolic archway is 16 meters high at the vertex. At a height of 14 meters, the
width of the archway is 12 meters, as shown in the figure at the right. How wide is
the archway at ground level?

r � 2 � 5 cos �r � 3 � 2 sin �r � �
�

6

r �
2

4 � 5 cos �

r � 4 cos �

4x � 4y � 1 � 0

	�3, �
11�

6 
	�2, 
5�

4 
	5, �
3�

4 
	8, 
5�

6 

�2� < � < 2�.

y �
e2x

e2x � 1
y �

2
x

x2 � y � 16y � 3x � 2

t �
x
2

.t � x

y �
1
2t2y � 2 sin2 �y � t2

x � 4 ln tx � cos �x � 2t � 1

�x2 � 4xy � 2y2 � 6.

−12

−12 12

4

(4, 0) 
(0, −6)

(0, −2)

−2

−8 10

10

(−4, 4)
(6, 4) 

(1, 2) 

(1, 6) 

−2

−3 6

4

(0, 0) 

(2, 3)

(4, 0) 

x2 � y2 � 2x � 4y � 1 � 0y2 � x2 � 16

�x � 2�2

4
�

�y � 1�2

9
� 1

�y � 3�2

36
�

�x � 5�2

121
� 1

x 

(0, 16) 

(6, 14) (−6, 14)

8

−8
−8 168

24

y

Figure for 55
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Proofs in Mathematics 707

Proofs in Mathematics

Proof
For the case in which the directrix is parallel to the axis and the focus lies above 
the vertex, as shown in the top figure, if is any point on the parabola, then, by 
definition, it is equidistant from the focus

and the directrix

So, you have

For the case in which the directrix is parallel to the -axis and the focus lies to the right
of the vertex, as shown in the bottom figure, if is any point on the parabola, then,
by definition, it is equidistant from the focus

and the directrix

So, you have

Note that when the vertex of a parabola is at the origin, the two equations above 
simplify to and respectively.y2 � 4px,x2 � 4py

 �y � k�2 � 4p�x � h�.

 �2px � 2ph � �y � k�2 � 2px � 2ph

 x2 � 2hx � 2px � h2 � 2ph � p2 � �y � k�2 � x2 � 2hx � 2px � h2 � 2ph � p2

 x2 � 2x�h � p� � �h � p�2 � �y � k�2 � x2 � 2x�h � p� � �h � p�2

 �x � �h � p��2 � � y � k�2 � �x � �h � p��2

 ��x � �h � p��2 � �y � k�2 � x � �h � p�

x � h � p.

�h � p, k�

�x, y�
y

 �x � h�2 � 4p�y � k�.

 �x � h�2 � 2py � 2pk � 2py � 2pk

 �x � h�2 � y2 � 2ky � 2py � k2 � 2pk � p2 � y2 � 2ky � 2py � k2 � 2pk � p2

 �x � h�2 � y2 � 2y�k � p� � �k � p�2 � y2 � 2y�k � p� � �k � p�2

 �x � h�2 � �y � �k � p��2 � �y � �k � p��2

 ��x � h�2 � � y � �k � p��2 � y � �k � p�

y � k � p.

�h, k � p�

�x, y�
x-

Standard Equation of a Parabola (p. 639)

The standard form of the equation of a parabola with vertex at is as follows.

Vertical axis, directrix:

Horizontal axis, directrix:

The focus lies on the axis units (directed distance) from the vertex. If the vertex
is at the origin then the equation takes one of the following forms.

Vertical axis

Horizontal axisy2 � 4px

x2 � 4py

�0, 0�,
p

x � h � p�y � k�2 � 4p�x � h�,  p � 0

y � k � p�x � h�2 � 4p�y � k�,  p � 0

�h, k�
Parabolic Paths

There are many natural 
occurrences of parabolas in 
real life. For instance, the
famous astronomer Galileo 
discovered in the 17th century
that an object that is projected
upward and obliquely to the 
pull of gravity travels in a 
parabolic path. Examples of 
this are the center of gravity 
of a jumping dolphin and the
path of water molecules in a
drinking fountain.

Focus:
(h, k + p)

Directrix:
y = k − p

Vertex:
(h, k)

p > 0

Axis:
x = h

(x, y) 

Parabola with vertical axis

Focus:
(h + p, k)

Vertex: (h, k)

p > 0

Axis:
y = k

Directrix:
x = h − p

(x, y) 

Parabola with horizontal axis
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708 Chapter 9 Topics in Analytic Geometry

Proof
You need to discover how the coordinates in the system are related to the coordinates
in the -system. To do this, choose a point in the original system and attempt
to find its coordinates in the rotated system. In either system, the 
distance between the point and the origin is the same. So, the equations for 
and are those given in the figures. Using the formulas for the sine and cosine of the
difference of two angles, you have the following.

Solving this system for and yields

and

Finally, by substituting these values for and into the original equation and collecting
terms, you obtain

To eliminate the -term, you must select such that 

� 0,     sin 2� � 0 � B�sin 2��	C � A

B
� cot 2�


 � �C � A� sin 2� � B cos 2�

 B� � 2�C � A� sin � cos � � B�cos2 � � sin2 �� 

B� � 0.�x�y�

 F� � F.

 E� � �D sin � � E cos �

 D� � D cos � � E sin �

 C� � A sin2 � � B cos � sin � � C cos2 �

 A� � A cos2 � � B cos � sin � � C sin2 �

yx

 y � x� sin � � y� cos �. x � x� cos � � y� sin �

yx

 � y cos � � x sin � � x cos � � y sin �

 � r sin � cos � � r cos � sin � � r cos � cos � � r sin � sin �

 � r�sin � cos � � cos � sin �� � r�cos � cos � � sin � sin ��

 y� � r sin�� � �� x� � r cos�� � ��

y�
x�,y,x,Pr

�x�, y� �
P�x, y�x�y�

xy-

Rotation of Axes to Eliminate an Term (p. 663)

The general second-degree equation can
be rewritten as

by rotating the coordinate axes through an angle where

The coefficients of the new equation are obtained by making the substitutions 
and y � x� sin � � y� cos �.x � x� cos � � y� sin �

cot 2� �
A � C

B
.

�,

A��x� �2 � C��y� �2 � D�x� � E�y� � F� � 0

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

xy-

x ′

y ′ P(x ′, y ′)

r 
− 

θ 

θ α 

x

y 

Rotated:

y� � r sin�� � ��
x� � r cos�� � ��

P(x, y)

r 

α 
x

y 

Original:

y � r sin �

x � r cos �
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Proofs in Mathematics 709

When no rotation is necessary because the -term is not present in the original
equation. When the only way to make is to let

So, you have established the desired results.

Proof
A proof for 

with is shown here. The proofs of the other cases are similar. In the figure,
consider a vertical directrix, units to the right of the focus If is a point
on the graph of

then the distance between and the directrix is

Moreover, because the distance between and the pole is simply the ratio of
to is

and, by definition, the graph of the equation must be a conic.

PF
PQ

�
�r�

�re� � �e� � e

PQPF
PF � �r�,P

 � �re�.
 � � p

1 � e cos ��
 � �p	1 �

e cos �
1 � e cos �
�

 � �p � 	 ep
1 � e cos �
 cos ��

 � �p � r cos ��
 PQ � �p � x�

P

r �
ep

1 � e cos �

P�r, ��F�0, 0�.p
p > 0

r �
ep

1 � e cos �

cot 2� �
A � C

B
,  B � 0.

B� � 0B � 0,
xyB � 0,

Polar Equations of Conics (p. 691)

The graph of a polar equation of the form

1. or 2.

is a conic, where is the eccentricity and is the distance between the 
focus (pole) and the directrix.

�p�e > 0

r �
ep

1 ± e sin �
r �

ep
1 ± e cos �

2 

F(0, 0)
0 

P(r,   )θ

θ 

θ x = r cos

Directrix 

p 

Q 

r

π 
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710 Chapter 9 Topics in Analytic Geometry

Progressive Summary (Chapters 3–9)
This chart outlines the topics that have been covered so far in this text. Progressive 
Summary charts appear after Chapters 2, 3, 6, and 9. In each Progressive Summary, new
topics encountered for the first time appear in red.

Exponential, Logarithmic, Trigonometric,
Inverse Trigonometric

� Rewriting
Exponential form ↔ Logarithmic form
Condense/expand logarithmic expressions
Simplify trigonometric expressions
Prove trigonometric identities
Use conversion formulas
Operations with vectors
Powers and roots of complex numbers

� Solving
Equation Strategy

Exponential  . . . . . . . Take logarithm of
each side

Logarithmic  . . . . . . . Exponentiate
each side

Trigonometric  . . . . . Isolate function
Factor, use inverse

function
Multiple angle  . . . . . Use trigonometric

or high powers identities

� Analyzing
Graphically Algebraically

Intercepts Domain, Range
Asymptotes Transformations
Minimum values Composition
Maximum values Inverse Properties

Amplitude, period
Reference angles

Numerically

Table of values

Systems, Sequences, Series

� Rewriting
Row operations for systems of equations
Partial fraction decomposition
Operations with matrices
Matrix form of a system of equations

th term of a sequence
Summation form of a series

� Solving
Equation Strategy

System of  . . . . . . . . . Substitution
linear equations Elimination

Gaussian
Gauss-Jordan
Inverse matrices
Cramer’s Rule

� Analyzing
Systems:

Intersecting, parallel, and coincident
lines, determinants

Sequences:
Graphing utility in dot mode, th term,
partial sums, summation formulas

Conics, Parametric  and Polar Equations

� Rewriting
Standard forms of conics
Eliminate parameters
Rectangular form ↔ Parametric form
Rectangular form ↔ Polar form

� Solving
Equation Strategy

Conics  . . . . . . . . . . . Convert to standard
form

Convert to polar
form

� Analyzing
Conics:

Table of values, vertices, foci, axes,
symmetry, asymptotes, translations,
eccentricity

Parametric forms:
Point plotting, eliminate parameters

Polar forms:
Point plotting, special equations,
symmetry, zeros, eccentricity,
maximum values, directrixr-

n

n

TRANSCENDENTAL FUNCTIONS SYSTEMS AND SERIES OTHER TOPICS
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