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180 Chapter 3 Exponential and Logarithmic Functions

Exponential Functions
So far, this text has dealt mainly with algebraic functions, which include polynomial
functions and rational functions. In this chapter you will study two types of nonalgebraic
functions—exponential functions and logarithmic functions. These functions are 
examples of transcendental functions.

Note that in the definition of an exponential function, the base is excluded
because it yields

Constant function

This is a constant function, not an exponential function.
You have already evaluated for integer and rational values of For example, you

know that

and

However, to evaluate for any real number you need to interpret 
forms with irrational exponents. For the purposes of this text, it is 
sufficient to think of

where 

as the number that has the successively closer approximations

Example 1 shows how to use a calculator to evaluate exponential functions.

Example 1 Evaluating Exponential Functions

Use a calculator to evaluate each function at the indicated value of 

Function Value

a.

b.

c.
d.

Solution
Function Value Graphing Calculator Keystrokes Display

a. 2 3.1 0.1166291

b. 2 0.1133147

c. .6 3 2 0.4647580

d. 1.05 2 12 3.2250999

Now try Exercise 7.

f�12� � �1.05�2�12�

 f �3
2� � �0.6�3�2

� f��� � 2��

 f��3.1� � 2�3.1

x � 12f�x� � 1.052x

x �
3
2 f�x� � 0.6 x

x � � f�x� � 2�x

x � �3.1 f�x� � 2x

x.

a1.4, a1.41, a1.414, a1.4142, a1.41421, .  .  . .

�2 � 1.41421356��a�2

x,4x

41�2 � 2.43 � 64

x.ax

 f�x� � 1x � 1.

a � 1

3.1 Exponential Functions and Their Graphs

What you should learn
● Recognize and evaluate 

exponential functions with 

base a.

● Graph exponential functions

with base a.

● Recognize, evaluate, and graph

exponential functions with base e.

● Use exponential functions to

model and solve real-life 

problems.

Why you should learn it
Exponential functions are useful

in modeling data that represent 

quantities that increase or decrease

quickly. For instance, Exercise 74 on

page 191 shows how an exponential 

function is used to model the 

depreciation of a new vehicle.

Definition of Exponential Function

The exponential function with base is denoted by

where and is any real number.xa > 0, a � 1,

 f �x� � ax

af

> ENTER

ENTER

ENTER

���

>
>

���

� � �

ENTER> � x �

Technology Tip
When evaluating 
exponential functions
with a calculator,

remember to enclose fractional
exponents in parentheses.
Because the calculator follows
the order of operations,
parentheses are crucial in order
to obtain the correct result.

Dic Liew 2010/used under license from Shutterstock.com
bignecker 2010/used under license from Shutterstock.com
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Section 3.1 Exponential Functions and Their Graphs 181

Graphs of Exponential Functions
The graphs of all exponential functions have similar characteristics, as shown in
Examples 2, 3, and 4.

Example 2 Graphs of y ax

In the same coordinate plane, sketch the graph of each function by hand.

a.

b.

Solution
The table below lists some values for each function. By plotting these points and 
connecting them with smooth curves, you obtain the graphs shown in Figure 3.1. Note
that both graphs are increasing. Moreover, the graph of is increasing more
rapidly than the graph of 

Now try Exercise 9.

Example 3 Graphs of y a x

In the same coordinate plane, sketch the graph of each function by hand.

a.

b.

Solution
The table below lists some values for each function. By plotting these points and 
connecting them with smooth curves, you obtain the graphs shown in Figure 3.2. Note
that both graphs are decreasing. Moreover, the graph of is decreasing more
rapidly than the graph of 

Now try Exercise 11.

The properties of exponents can also be applied to real-number exponents. For
review, these properties are listed below.

1. 2. 3. 4.

5. 6. 7. 8. 	a2	 � 	a	2 � a2
a
b�

x

�
ax

bx�ax�y � axy�ab�x � axbx

a0 � 1a�x �
1
ax � 
1

a�
xax

ay � ax�yaxay � ax�y

F�x� � 2�x.
G�x� � 4�x

G �x� � 4�x

F �x� � 2�x

��

 f �x� � 2x.
g�x� � 4x

g�x� � 4x

 f �x� � 2x

�

x �2 �1 0 1 2 3

2x 1
4

1
2 1 2 4 8

4x 1
16

1
4 1 4 16 64

x �3 �2 �1 0 1 2

2�x 8 4 2 1 1
2

1
4

4�x 64 16 4 1 1
4

1
16

Figure 3.1

Figure 3.2

Study Tip
In Example 3, note 
that the functions

and
can be rewritten

with positive exponents.

and

G �x� � 4�x � 
1

4�
x

F�x� � 2�x � 
1
2�

x

G �x� � 4�x
F�x� � 2�x
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182 Chapter 3 Exponential and Logarithmic Functions

Comparing the functions in Examples 2 and 3, observe that 

and

Consequently, the graph of is a reflection (in the -axis) of the graph of as shown
in Figure 3.3. The graphs of and have the same relationship, as shown in Figure 3.4.

Figure 3.3 Figure 3.4

The graphs in Figures 3.3 and 3.4 are typical of the graphs of the exponential functions

and

They have one -intercept and one horizontal asymptote (the -axis), and they are
continuous. The basic characteristics of these exponential functions are summarized
below.

xy

f�x� � a�x.f �x� � ax

0
−3 3

4
G(x) = 4−x g(x) = 4x

0
−3 3

4
f(x) = 2xF(x) = 2−x

gG
f,yF

G�x� � 4�x � g��x�.F�x� � 2�x � f ��x�

Explore the Concept
Use a graphing utility
to graph for

, 5, and 7 in the
same viewing window. (Use 
a viewing window in which

and 
How do the graphs compare
with each other? Which graph
is on the top in the interval

Which is on the
bottom? Which graph is on 
the top in the interval 
Which is on the bottom?
Repeat this experiment with the
graphs of for 
and (Use a viewing window
in which and

What can you 
conclude about the shape of 
the graph of and the
value of b?

y � bx

0 ≤ y ≤ 2.)
�1 ≤ x ≤ 2

1
7.

b �
1
3, 15,y � bx

�0, ��?

���, 0�?

0 ≤ y ≤ 2.)�2 ≤ x ≤ 1

a � 3
y � ax

Library of Parent Functions: Exponential Function
The parent exponential function

is different from all the functions you have studied so far because the variable is
an exponent. A distinguishing characteristic of an exponential function is its rapid
increase as increases for Many real-life phenomena with patterns of 
rapid growth (or decline) can be modeled by exponential functions. The basic 
characteristics of the exponential function are summarized below and on the inside
cover of this text.

Graph of Graph of

Domain: Domain:

Range: Range:

Intercept: Intercept:

Increasing on Decreasing on 

-axis is a horizontal asymptote -axis is a horizontal asymptote

as as 

Continuous Continuous

(0, 1) 

y 

x 

f(x) = a−x

(0, 1) 

y 

x 

f(x) = ax

x →���a�x → 0x → ����ax → 0

xx

���, �����, ��
�0, 1��0, 1�

�0, ���0, ��
���, �����, ��

a > 1f�x� � a�x,a > 1f �x� � ax,

a > 1�.�x

x

a � 1a > 0,f �x� � ax,
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Section 3.1 Exponential Functions and Their Graphs 183

In the following example, the graph of

is used to graph functions of the form

where and are any real numbers.

Example 4 Library of Parent Functions: f x ax

Each of the following graphs is a transformation of the graph of 

a. Because the graph of can be obtained by shifting the
graph of one unit to the left, as shown in Figure 3.5.

b. Because the graph of can be obtained by shifting the
graph of downward two units, as shown in Figure 3.6.

c. Because the graph of can be obtained by reflecting the
graph of in the -axis, as shown in Figure 3.7.

d. Because the graph of can be obtained by reflecting the graph
of in the -axis, as shown in Figure 3.8.

Figure 3.5 Figure 3.6

Figure 3.7 Figure 3.8

Now try Exercise 21.

Notice that the transformations in Figures 3.5, 3.7, and 3.8 keep the -axis 
as a horizontal asymptote, but the transformation in Figure 3.6 yields a new

horizontal asymptote of Also, be sure to note how the -intercept is affected
by each transformation.

yy � �2.
�y � 0�

x

yf
jj�x� � 3�x � f ��x�,

xf
kk�x� � �3x � �f �x�,

f
hh�x� � 3x � 2 � f�x� � 2,

f
gg�x� � 3x�1 � f �x � 1�,

 f �x� � 3x.

���

cb

 f�x� � b ± ax�c

y � ax

Explore the Concept
The following table
shows some points on
the graphs in Figure 3.5.

The functions and 
are represented by Y1 and Y2,
respectively. Explain how you
can use the table to describe the
transformation.

g�x�f �x�

What’s Wrong?
You use a graphing utility to
graph and 
as shown in the figure. You use
the graph to conclude that the
graph of can be obtained by
shifting the graph of upward
two units. What’s wrong?

fg

−5
0

4

6

f
g

g�x� � 3x�2,f�x� � 3x
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184 Chapter 3 Exponential and Logarithmic Functions

The Natural Base e
For many applications, the convenient choice for a base is the irrational number

This number is called the natural base. The function

is called the natural exponential function and its graph is shown in Figure 3.9. The
graph of the natural exponential function has the same basic characteristics as the graph
of the function (see page 182). Be sure you see that for the natural exponential
function is the constant whereas is the variable.

Figure 3.9 The Natural Exponential Function

In Example 5, you will see that the number can be approximated by the
expression

for large values of x.
1 �
1
x�

x

e

y 

x 

f(x) = ex

(1, e) 

(0, 1) 

−1, ((
−2,

1 
e 

((
−1−2−3 1 2 3 

−1

1 

2 

3 

4 

5 

1
e2

x2.718281828 .  .  . ,e f �x� � ex,
 f �x� � ax

 f �x� � ex

e � 2.718281828 .  .  . .

Example 5 Approximation of the Number e
Evaluate the expression

for several large values of to see that the values approach

as increases without bound.x

e � 2.718281828

x


1 �
1
x�

x

Graphical Solution

Figure 3.10

Now try Exercise 27.

−1

−1 10

4
y1 = 1 +

1
x( (

x

y2 = e

As x increases, the
graph of y1 gets
closer and closer to
the graph of the
line y2 = e.

Numerical Solution

Figure 3.11

From Figure 3.11, it seems reasonable to 
conclude that

as x →�.
1 �
1
x�

x

→ e

Use the table feature
(in ask mode) to
evaluate y1 for
increasing values of x.

Enter y1 = [1 + (1/x)] x.

Explore the Concept
Use your graphing 
utility to graph the
functions

in the same viewing window.
From the relative positions of
these graphs, make a guess as
to the value of the real number

Then try to find a number 
such that the graphs of 
and are as close to each
other as possible.

y4 � ax
y2 � ex

ae.

y3 � 3x

y2 � ex

y1 � 2x
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Section 3.1 Exponential Functions and Their Graphs 185

Example 6 Evaluating the Natural Exponential Function

Use a calculator to evaluate the function

at each indicated value of 

a.

b.

c.

d.

Solution
Function Value Graphing Calculator Keystrokes Display

a. 2 0.1353353

b. .25 1.2840254

c. .4 0.6703200

d. 2 3 1.9477340

Now try Exercise 29.

Example 7 Graphing Natural Exponential Functions

Sketch the graph of each natural exponential function.

a.

b.

Solution
To sketch these two graphs, you can use a calculator to construct a table of values,
as shown below.

After constructing the table, plot the points and connect them with smooth curves.
Note that the graph in Figure 3.12 is increasing, whereas the graph in Figure 3.13 is
decreasing. Use a graphing calculator to verify these graphs.

Figure 3.12 Figure 3.13

Now try Exercise 47.

−1−2−3−4 1 2 3 4 
−1

1 

2 

3 

4 

5 

6 

7 

y 

x 

g(x) =   e−0.58x1
2

−1−2−3−4 1 2 3 4 
−1

1 

3 

4 

5 

6 

7 

y 

x 

f(x) = 2e0.24x

g�x� �
1
2e�0.58x

 f �x� � 2e0.24x

f�2
3� � e2�3

 f��0.4� � e�0.4

 f�0.25� � e0.25

 f��2� � e�2

x �
2
3

x � �0.4

x � 0.25

x � �2

x.

 f�x� � ex

Explore the Concept
Use a graphing 
utility to graph

Describe the behavior of the
graph near Is there a 

intercept? How does the
behavior of the graph near

relate to the result of
Example 5? Use the table
feature of the graphing utility
to create a table that shows
values of for values of near

to help you describe the
behavior of the graph near this 

point.

x � 0
xy

x � 0

y-
x � 0.

y � �1 � x�1�x.

ex

ex

���

ex ���

ENTER

ENTER

ENTER

ex

x �3 �2 �1 0 1 2 3

f�x� 0.974 1.238 1.573 2.000 2.542 3.232 4.109

g�x� 2.849 1.595 0.893 0.500 0.280 0.157 0.088

ENTER� � �

Matt Antonino 2010/used under license from Shutterstock.com
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186 Chapter 3 Exponential and Logarithmic Functions

Applications
One of the most familiar examples of exponential growth is an investment earning 
continuously compounded interest. Suppose a principal is invested at an annual 
interest rate compounded once a year. If the interest is added to the principal at the
end of the year, then the new balance is

This pattern of multiplying the previous principal by is then repeated each 
successive year, as shown in the table.

To accommodate more frequent (quarterly, monthly, or daily) compounding of
interest, let be the number of compoundings per year and let be the number of years.
(The product represents the total number of times the interest will be compounded.)
Then the interest rate per compounding period is and the account balance after 
years is

Amount (balance) with compoundings per year

When the number of compoundings increases without bound, the process approaches
what is called continuous compounding. In the formula for compoundings per year,
let This produces

As increases without bound, you know from Example 5 that

approaches So, for continuous compounding, it follows that

and you can write This result is part of the reason that is the “natural”
choice for a base of an exponential function.

eA � Pert.

P�ertP�
1 �
1

m�
m

�
rt

e.


1 �
1
m�

m

m

� P�
1 �
1

m�
m

�
r t

.� P
1 �
1

m�
mrt

A � P
1 �
r

n�
nt

m � n�r.
n

n

nA � P
1 �
r

n�
nt

.

tr�n,
nt

tn

1 � r

P1 � P � Pr � P�1 � r�.

P1

r,
P

Time in years Balance after each compounding

0 P � P

1 P1 � P�1 � r�

2 P2 � P1�1 � r� � P�1 � r��1 � r� � P�1 � r�2

� �

t Pt � P�1 � r�t

Formulas for Compound Interest

After years, the balance in an account with principal and annual interest
rate (in decimal form) is given by the following formulas.

1. For compoundings per year:

2. For continuous compounding: A � Pert

A � P
1 �
r

n�
nt

n

r
PAt

Explore the Concept
Use the formula

to calculate the amount in an
account when 

years, and the
interest is compounded (a) by
the day, (b) by the hour, (c) by
the minute, and (d) by the 
second. Does increasing the
number of compoundings per
year result in unlimited growth
of the amount in the account?
Explain.

t � 10r � 6%,
P � $3000,

A � P
1 �
r
n�

nt

Study Tip
The interest rate 
in the formula for 
compound interest

should be written as a decimal.
For example, an interest rate 
of 7% would be written as
r � 0.07.

r
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Section 3.1 Exponential Functions and Their Graphs 187

Example 8 Finding the Balance for Compound Interest

A total of $9000 is invested at an annual interest rate of 2.5%, compounded annually.
Find the balance in the account after 5 years.

Algebraic Solution
In this case,

Using the formula for compound interest with 
compoundings per year, you have

Simplify.

Use a calculator.

So, the balance in the account after 5 years will be about
$10,182.67.

Now try Exercise 57.

 � $10,182.67.

 � 9000�1.025�5

Substitute for P, r,
n, and t. � 9000
1 �

0.025

1 �
1�5�

Formula for 
compound interest A � P
1 �

r

n�
nt

n

t � 5.n � 1,r � 2.5% � 0.025,P � 9000,

Graphical Solution
Substitute the values for and into the formula for 
compound interest with compoundings per year and simplify
to obtain

Use a graphing utility to graph Then use the
value feature to approximate the value of when as
shown in Figure 3.14.

Figure 3.14

0
100

20,000

The balance in the account
after 5 years will be about
$10,182.67.

t � 5,A
A � 9000�1.025�t.

A � 9000�1.025�t.

n
nr,P,

Example 9 Finding Compound Interest

A total of $12,000 is invested at an annual interest rate of 3%. Find the balance 
after 4 years for each type of compounding.

a. Quarterly

b. Continuous

Solution
a. For quarterly compoundings, So, after 4 years at 3%, the balance is

Formula for compound interest

Substitute for and 

Use a calculator.

b. For continuous compounding, the balance is

Formula for continuous compounding

Substitute for and 

Use a calculator.

Note that a continuous-compounding account yields more than a quarterly-
compounding account.

Now try Exercise 59.

Example 9 illustrates the following general rule. For a given principal, interest rate,
and time, the more often the interest is compounded per year, the greater the balance
will be. Moreover, the balance obtained by continuous compounding is greater than the
balance obtained by compounding times per year.n

 � $13,529.96.

t.r,P, � 12,000e0.03(4)

 A � Pert

 � $13,523.91.

t.n,r,P, � 12,000
1 �
0.03

4 �
4(4)

 A � P
1 �
r

n�
nt

n � 4.

Financial Analyst
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188 Chapter 3 Exponential and Logarithmic Functions

Example 11 Population Growth

The approximate number of fruit flies in an experimental population after hours is
given by

where 

a. Find the initial number of fruit flies in the population.

b. How large is the population of fruit flies after 72 hours?

c. Graph 

Solution
a. To find the initial population, evaluate 

when 

b. After 72 hours, the population size is

c. The graph of is shown in Figure 3.15.

Now try Exercise 73.

Q

Q�72� � 20e0.03�72� � 20e2.16 � 173 flies.

Q�0� � 20e0.03(0) � 20e0 � 20�1� � 20 flies

t � 0.
Q�t�

Q.

t � 0.

Q�t� � 20e0.03t

t

Algebraic Solution

a. Write original equation.

Substitute 0 for 

Simplify.

So, the initial mass is 10 grams.

b. Write original equation.

Substitute 80 for 

Simplify.

Use a calculator.

So, about 1.48 grams are present after 80 years.

Now try Exercise 71.

 � 1.48

 � 10
1
2�

2.759

t. � 10
1
2�

80�29

 y � 10
1

2�
t�29

 � 10

t. � 10
1
2�

0�29

 y � 10
1

2�
t�29

Graphical Solution
a.

b.

0
1500

12

When t = 80, y ≈ 1.48.
So, about 1.48 grams are
present after 80 years.

0
1500

12
When t = 0, y = 10.
So, the initial mass
is 10 grams.

Example 10 Radioactive Decay

Let represent a mass, in grams, of radioactive strontium whose half-life is 
29 years. The quantity of strontium present after years is

a. What is the initial mass (when )?

b. How much of the initial mass is present after 80 years?

t � 0

y � 10�1
2�t�29

.

t
�90Sr�,y

0
800

Q(t) = 20e0.03t, t ≥ 0200

Figure 3.15
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Section 3.1 Exponential Functions and Their Graphs 189

Evaluating Exponential Functions In Exercises 5–8, use
a calculator to evaluate the function at the indicated
value of Round your result to three decimal places.

Function Value

5.

6.

7.

8.

Graphs of and In Exercises 9–16, graph
the exponential function by hand. Identify any 
asymptotes and intercepts and determine whether the
graph of the function is increasing or decreasing.

9. 10.

11. 12.

13. 14.

15. 16.

Library of Parent Functions In Exercises 17–20,
use the graph of to match the function with its
graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

17. 18.

19. 20.

Library of Parent Functions In Exercises 21–26,
use the graph of to describe the transformation that
yields the graph of Then sketch the graphs of and 
by hand.

21.

22.

23.

24.

25.

26.

Approximation of a Power with Base e In Exercises 27
and 28, show that the value of approaches the value
of as increases without bound (a) graphically and
(b) numerically.

27.

28.

Evaluating the Natural Exponential Function In
Exercises 29–32, use a calculator to evaluate the function
at the indicated value of Round your result to the
nearest thousandth.

Function Value

29.

30.

31.

32.

Graphing an Exponential Function In Exercises 33–48,
use a graphing utility to construct a table of values for
the function. Then sketch the graph of the function.
Identify any asymptotes of the graph.

33. 34.

35. 36. f �x� � 2x�1f�x� � 6x

f �x� � �5
2��x

f �x� � �5
2�x

x � 200h�x� � �5.5e�x

x � 0.02g�x� � 50e4x

x � �
3
4f �x� � e�x

x � 9.2f �x� � ex

x.

g�x� � e3f �x� � �1 � �3�x�x,

g�x� � e2f �x� � �1 � �2�x�x,

xg�x�
f�x�

g�x� � �1
2���x�4�f �x� � �1

2�x
,

g�x� � 4x�2 � 3f �x� � 4x,

g�x� � �0.3x � 5f�x� � 0.3x,

g�x� � ��3
5�x�4

f�x� � �3
5�x

,

g�x� � 5 � 2xf�x� � �2x,

g�x� � 3x�5f�x� � 3x,

gfg.
f

f �x� � 2x � 1f �x� � 2x � 4

f �x� � 2�xf �x� � 2x�2

−5

−1

7

7

−6

−5

6

3

−7

−1

5

7

−5

−1

7

7

y � 2x

f�x) � 10�xg�x� � 3�x

g�x� � 10xh�x� � 3x

h�x� � �  32��x
f �x� � 5�x

f �x� � �  32�x
g�x� � 5x

y � a�xy � ax

x � ��2h�x� � 8.6�3x

x � ��g�x� � 5x

x �
1
3f�x� � 1.2x

x � 6.8f �x� � 3.4x

x.

Vocabulary and Concept Check
In Exercises 1 and 2, fill in the blank(s).

1. Exponential and logarithmic functions are examples of nonalgebraic functions,
also called _______ functions.

2. The exponential function is called the _______ function, and the base 
is called the _______ base.

3. What type of transformation of the graph of is the graph of 

4. The formula gives the balance of an account earning what type of interest?

Procedures and Problem Solving

AA � Pert

f�x � 1�?f �x� � 5x

e f �x� � ex

3.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.
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190 Chapter 3 Exponential and Logarithmic Functions

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

Finding Asymptotes In Exercises 49–52, use a graphing
utility to (a) graph the function and (b) find any 
asymptotes numerically by creating a table of values for
the function.

49. 50.

51. 52.

Finding Points of Intersection In Exercises 53 and 54,
use a graphing utility to find the point(s) of intersection,
if any, of the graphs of the functions. Round your result
to three decimal places.

53. 54.

Approximating Relative Extrema In Exercises 55 and
56, (a) use a graphing utility to graph the function, (b)
use the graph to find the open intervals on which the 
function is increasing and decreasing, and (c) approximate
any relative maximum or minimum values.

55. 56.

Finding the Balance for Compound Interest In
Exercises 57–60, complete the table to determine the 
balance for $2500 invested at rate for years and
compounded times per year.

57. years 58. years

59. years 60. years

Finding the Balance for Compound Interest In
Exercises 61–64, complete the table to determine the 
balance for $12,000 invested at rate for years,
compounded continuously.

61. 62.

63. 64.

Finding the Amount of an Annuity In Exercises 65–68,
you build an annuity by investing dollars every 
month at interest rate compounded monthly. Find the
amount accrued after months using the formula

where is in decimal form.

65. months

66. months

67. months

68. months

70. Radioactive Decay Let represent a mass, in grams,
of radioactive radium whose half-life is 
1599 years. The quantity of radium present after years
is given by

(a) Determine the initial quantity when 

(b) Determine the quantity present after 1000 years.

(c) Use a graphing utility to graph the function over the
interval to 

(d) When will the quantity of radium be 0 grams?
Explain.

t � 5000.t � 0

t � 0�.�

Q � 25� 12�t�1599.

t
�226Ra�,
Q

n � 24r � 0.03,P � $75,

n � 72r � 0.06,P � $200,

n � 60r � 0.09,P � $100,

n � 48r � 0.12,P � $25,

r

A � P��1 � r/12�n � 1
r/12 �

nA
r,

P

r � 2.5%r � 3.5%

r � 6%r � 4%

trA

r � 3%, t � 40r � 4%, t � 20

r � 6%, t � 10r � 2%, t � 10

n
trA

f�x� � 2x2ex�1f �x� � x2e�x

y � 12,500y � 1500

y � 100e0.01xy � 20e0.05x

f�x� �
6

2 � e0.2�xf�x� � �
6

2 � e0.2x

g�x� �
8

1 � e�0.5�x
f �x� �

8

1 � e�0.5x

g�x� � 1 � e�xs�t� � 2e0.12t

g�x� � 2 � e�xf�x� � 2 � ex�5

f�x� � 2e�0.5xf�x� � 3ex�4

s�t� � 3e�0.2tf�x� � e�x

y � 4x�1 � 2y � 3x�2 � 1

y � 2�x2
f�x� � 3x�2

n 1 2 4 12 365 Continuous

A

t 1 10 20 30 40 50

A

69. MODELING DATA
There are three options for 
investing $500. The first earns 
7% compounded annually, the 
second earns 7% compounded 
quarterly, and the third earns 
7% compounded continuously.

(a) Find equations that model 
the growth of each investment 
and use a graphing utility 
to graph each model in the 
same viewing window over 
a 20-year period.

(b) Use the graph from part (a) 
to determine which investment 
yields the highest return after 
20 years. What are the differences
in earnings among the three 
investments?

Justin Horrocks/iStockphoto.com
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Section 3.1 Exponential Functions and Their Graphs 191

71. Radioactive Decay Let represent a mass, in grams,
of carbon whose half-life is 5715 years. The
quantity present after years is given by

(a) Determine the initial quantity (when ).

(b) Determine the quantity present after 2000 years.

(c) Sketch the graph of the function over the interval
to 

72. Algebraic-Graphical-Numerical Suppose the annual
rate of inflation is 4% for the next 10 years. The 
approximate cost of goods or services during these
years is where is the time (in years)
and is the present cost. An oil change for your car
presently costs $23.95. Use the following methods to
approximate the cost 10 years from now.

(a) Use a graphing utility to graph the function and then
use the value feature.

(b) Use the table feature of the graphing utility to find a
numerical approximation.

(c) Use a calculator to evaluate the cost function 
algebraically.

73. Population Growth The projected populations of
California for the years 2015 through 2030 can be 
modeled by where is the population
(in millions) and is the time (in years), with 
corresponding to 2015. (Source: U.S. Census Bureau)

(a) Use a graphing utility to graph the function for the
years 2015 through 2030.

(b) Use the table feature of the graphing utility to create a
table of values for the same time period as in part (a).

(c) According to the model, in what year will the 
population of California exceed 50 million?

74. (p. 180) In early 2010, a
new sedan had a manufacturer’s suggested
retail price of $31,915. After years, the
sedan’s value is given by

(a) Use a graphing utility to graph the function.

(b) Use the graphing utility to create a table of values
that shows the value for to years.

(c) According to the model, when will the sedan have
no value?

Conclusions
True or False? In Exercises 75 and 76, determine
whether the statement is true or false. Justify your answer.

75. is not an exponential function.

76.

77. Library of Parent Functions Determine which
equation(s) may be represented by the graph shown.
(There may be more than one correct answer.)

(a)

(b)

(c)

(d) 

78. Exploration Use a graphing utility to graph 
and each of the functions 
and in the same viewing window.

(a) Which function increases at the fastest rate for
“large” values of 

(b) Use the result of part (a) to make a conjecture about
the rates of growth of and where 
is a natural number and is “large.”

(c) Use the results of parts (a) and (b) to describe what
is implied when it is stated that a quantity is growing
exponentially.

79. Think About It Graph and Use the
graph to solve the inequality 

Think About It In Exercises 81–84, place the correct
symbol or between the two of numbers.

81. 82.

83. 84.

Cumulative Mixed Review
Inverse Functions In Exercises 85–88, determine
whether the function has an inverse function. If it does,
find 

85. 86.

87. 88.

89. Make a Decision To work an extended application
analyzing the population per square mile in the United
States, visit this textbook’s Companion Website. (Data
Source: U.S. Census Bureau)

f�x� � �x2 � 6f�x� � 3�x � 8

f�x� � �
2
3x �

5
2f�x� � 5x � 7

 f�1.

41�2 � �1
2�4

5�3 � 3�5

210 � 102e� � � e

>��<

3x < 4x.
y � 4x.y � 3x

x
ny � xn,y1 � ex

x?

y5 � 	x	
y4 � �x,y3 � x3,y2 � x2,

y1 � ex

y � e�x � 1

y � e�x � 1

y � �e�x � 1

x 

y y � ex � 1

e �
271,801
99,990

 f �x� � 1x

t � 10t � 1V

V�t� � 31,915�4
5�t

.

t

t � 15t
PP � 34.706e0.0097t,

P
tC�t� � P�1.04�t,

C

t � 10,000.t � 0

t � 0

Q � 10�1
2�t�5715

.
t

14 �14C�,
Q

80. C A P S T O N E The figure
shows the graphs of 

and 
Match each function with its
graph. [The graphs are labeled
(a) through (f).] Explain your
reasoning.

y � 10�x.y � e�x,
y � 2�x,y � 10x,y � ex,

y � 2x,

−1−2 1 2

6

8

10

a

b

c d

e

f

x

y

Dic Liew 2010/used under license from Shutterstock.com
bignecker 2010/used under license from Shutterstock.com
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192 Chapter 3 Exponential and Logarithmic Functions

Logarithmic Functions
In Section 1.6, you studied the concept of an inverse function. There, you learned that
when a function is one-to-one—that is, when the function has the property that no 
horizontal line intersects its graph more than once—the function must have an inverse
function. By looking back at the graphs of the exponential functions introduced in
Section 3.1, you will see that every function of the form

passes the Horizontal Line Test and therefore must have an inverse function. This
inverse function is called the logarithmic function with base 

From the definition above, you can see that every logarithmic equation 
can be written in an equivalent exponential form and every exponential 
equation can be written in logarithmic form. The equations

and

are equivalent.
When evaluating logarithms, remember that a logarithm is an exponent. 

This means that is the exponent to which must be raised to obtain 
For instance, because 2 must be raised to the third power to get 8.

Example 1 Evaluating Logarithms

Use the definition of logarithmic function to evaluate each logarithm at the indicated
value of 

Function Value

a.

b.

c.

d.

Solution
a. because

b. because

c. because

d. because

Now try Exercise 23.

10�2 �
1

102 �
1

100.f � 1
100� � log10 

1
100 � �2

41�2 � �4 � 2.f �2� � log4 2 �
1
2

30 � 1.f �1� � log3 1 � 0

25 � 32.f �32� � log2 32 � 5

x �
1

100f �x� � log10 x

x � 2f �x� � log4 x

x � 1f �x� � log3 x

x � 32f �x� � log2 x

x.

log2 8 � 3
x.aloga x

x � ayy � loga x

a.

a � 1a > 0,f �x� � ax,

3.2 Logarithmic Functions and Their Graphs

What you should learn
● Recognize and evaluate loga-

rithmic functions with base a.

● Graph logarithmic functions

with base a.

● Recognize, evaluate, and graph

natural logarithmic functions.

● Use logarithmic functions to

model and solve real-life 

problems.

Why you should learn it
Logarithmic functions are useful 

in modeling data that represent 

quantities that increase or decrease

slowly. For instance, Exercise 114 

on page 201 shows how to use a

logarithmic function to model the

minimum required ventilation rates

in public school classrooms.

Definition of Logarithmic Function

For and 

if and only if

The function given by

Read as “log base of ”

is called the logarithmic function with base a.

x.af �x� � loga x

x � ay.y � loga x

a � 1,a > 0,x > 0,

Study Tip
In this text, the paren-
theses in are
sometimes omitted

when is an expression involving
exponents, radicals, products,
or quotients. For instance,

can be written as
To evaluate 

find the logarithm of the 
product 2x.

log10 2x,log10 2x.
log10�2x�

u

loga�u�

Kirsty Pargeter 2010/used under license from Shutterstock.com
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Section 3.2 Logarithmic Functions and Their Graphs 193

The logarithmic function with base 10 is called the common logarithmic function.
On most calculators, this function is denoted by . Example 2 shows how to use 
a calculator to evaluate common logarithmic functions. You will learn how to use a 
calculator to calculate logarithms to any base in the next section.

Example 2 Evaluating Common Logarithms on a Calculator

Use a calculator to evaluate the function

at each value of 

a. b.

c. d.

Solution
Function Value Graphing Calculator Keystrokes Display

a. 10 1

b. 2.5 0.3979400

c. 2 ERROR

d. 1 4

Note that the calculator displays an error message when you try to evaluate 
In this case, there is no real power to which 10 can be raised to obtain 

Now try Exercise 27.

The following properties follow directly from the definition of the logarithmic
function with base 

Example 3 Using Properties of Logarithms

a. Solve for 

b. Solve for 

c. Simplify:

d. Simplify:

Solution
a. Using the One-to-One Property (Property 4), you can conclude that 

b. Using Property 2, you can conclude that 

c. Using the Inverse Property (Property 3), it follows that 

d. Using the Inverse Property (Property 3), it follows that 

Now try Exercise 31.

7log7 14 � 14.

log5 5
x � x.

x � 1.

x � 3.

7 log7 14

log5 5
x

log4 4 � xx:

log2 x � log2 3x:

a.

�2.
log10��2�.

�0.6020600f �1
4� � log10 

1
4

f ��2� � log10��2�
f �2.5� � log10 2.5

f �10� � log10 10

x �
1
4x � �2

x � 2.5x � 10

x.

f�x� � log10 x

LOG

LOG ��� ENTER

ENTERLOG �

LOG ENTER

LOG ENTER

� �

Properties of Logarithms

1. because 

2. because 

3. and Inverse Properties

4. If then One-to-One Propertyx � y.loga x � loga y,

aloga x � x.loga a
x � x

a1 � a.loga a � 1

a0 � 1.loga 1 � 0

Technology Tip
Some graphing utilities
do not give an error
message for 

Instead, the graphing utility
will display a complex number.
For the purpose of this text,
however, it will be said that 
the domain of a logarithmic
function is the set of positive 
real numbers.

log10��2�.
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194 Chapter 3 Exponential and Logarithmic Functions

Graphs of Logarithmic Functions
To sketch the graph of

you can use the fact that the graphs of inverse functions are reflections of each other in
the line 

Example 4 Graphs of Exponential and Logarithmic Functions

In the same coordinate plane, sketch the graph of each function by hand.

a.

b.

Solution
a. For construct a table of values. By plotting these points and connecting

them with a smooth curve, you obtain the graph of shown in Figure 3.16.

b. Because is the inverse function of the graph of is obtained
by plotting the points and connecting them with a smooth curve. The graph
of is a reflection of the graph of in the line as shown in Figure 3.16.

Now try Exercise 41.

Before you can confirm the result of Example 4 using a graphing utility, you need
to know how to enter You will learn how to do this using the change-of-base 
formula discussed in Section 3.3.

Example 5 Sketching the Graph of a Logarithmic Function

Sketch the graph of the common logarithmic function by hand.

Solution
Begin by constructing a table of values. Note that some of the values can be obtained
without a calculator by using the Inverse Property of Logarithms. Others require a 
calculator. Next, plot the points and connect them with a smooth curve, as shown in
Figure 3.17.

Now try Exercise 45.

The nature of the graph in Figure 3.17 is typical of functions of the form
They have one -intercept and one vertical asymptote. Notice how

slowly the graph rises for x > 1.
xf �x� � loga x, a > 1.

f �x� � log10 x

log2 x.

y � x,fg
� f�x�, x�

gf �x� � 2x,g�x� � log2 x

f
f �x� � 2x,

g�x� � log2 x

f �x� � 2x

y � x.

y � loga  x

x �2 �1 0 1 2 3

f�x� � 2x 1
4

1
2 1 2 4 8

Without calculator With calculator

x 1
100

1
10 1 10 2 5 8

f�x� � log10x �2 �1 0 1 0.301 0.699 0.903

Figure 3.16

Figure 3.17
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Explore the Concept
Use a graphing utility
to graph 
and in the same

viewing window. Find a viewing
window that shows the point of
intersection. What is the point
of intersection? Use the point
of intersection to complete the
equation log10 � � 8.

y � 8
y � log10 x

Section 3.2 Logarithmic Functions and Their Graphs 195

Example 6 Library of Parent Functions f x loga x
Each of the following functions is a transformation of the graph of

a. Because the graph of can be obtained by shifting
the graph of one unit to the right, as shown in Figure 3.18.

b. Because the graph of can be obtained by shifting
the graph of two units upward, as shown in Figure 3.19.

Figure 3.18 Figure 3.19

Notice that the transformation in Figure 3.19 keeps the -axis as a vertical asymptote,
but the transformation in Figure 3.18 yields the new vertical asymptote 

Now try Exercise 55.

x � 1.
y

f
hh�x� � 2 � log10 x � 2 � f�x�,

f
gg�x� � log10�x � 1� � f�x � 1�,

f �x� � log10 x.

���

Library of Parent Functions: Logarithmic Function
The parent logarithmic function

is the inverse function of the exponential function. Its domain is the set of positive
real numbers and its range is the set of all real numbers. This is the opposite of the
exponential function. Moreover, the logarithmic function has the -axis as a vertical
asymptote, whereas the exponential function has the -axis as a horizontal asymptote.
Many real-life phenomena with slow rates of growth can be modeled by 
logarithmic functions. The basic characteristics of the logarithmic function are 
summarized below and on the inside cover of this text.

Graph of

Domain:

Range:

Intercept:

Increasing on 

axis is a vertical asymptote

Continuous

Reflection of graph of 
in the line y � x

f�x� � ax

�loga x → �� as x →  0��
y-

�0, ��
�1, 0�

���, ��
�0, ��

x 

1 

−1

1 2 

f(x) = loga x

(1, 0) 

y f�x� � loga x,  a > 1

x
y

a � 1a > 0,f �x� � loga x,

Edyta Pawlowska 2010/used under license from Shutterstock.com
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196 Chapter 3 Exponential and Logarithmic Functions

The Natural Logarithmic Function
By looking back at the graph of the natural exponential function introduced in 
Section 3.1, you will see that is one-to-one and so has an inverse function.
This inverse function is called the natural logarithmic function and is denoted by the
special symbol read as “the natural log of ” or “el en of ”

The equations and are equivalent. Note that the natural logarithm
is written without a base. The base is understood to be 
Because the functions

and

are inverse functions of each other, their graphs are reflections of each other in the line
This reflective property is illustrated in Figure 3.20.

Example 7 Evaluating the Natural Logarithmic Function

Use a calculator to evaluate the function

at each indicated value of 

a.

b.

c.

Solution
Function Value Graphing Calculator Keystrokes Display

a. 2 0.6931472

b. .3

c. 1 ERROR

Now try Exercise 77.

The four properties of logarithms listed on page 193 are also valid for natural
logarithms.

f��1� � ln��1�
�1.2039728f�0.3� � ln 0.3

f�2� � ln 2

x � �1

x � 0.3

x � 2

x.

f�x� � ln x

y � x.

g�x� � ln xf �x� � ex

e.ln x
x � eyy � ln x

x.xln x,

f�x� � ex

The Natural Logarithmic Function

For 

if and only if

The function given by

is called the natural logarithmic function.

f �x� � loge x � ln x

x � ey.y � ln x

x > 0,

x 
32−1−2

3 

2 

−1

−2

( e , 1) 

(1, 0) 

, −11
e(         )

(         )1
e

−1,

g(x) = f −1(x) = ln x

(1, e) 

(0, 1) 

y f(x) = ex

y = x

Reflection of graph of in the
line 
Figure 3.20

y � x
f �x� � ex

Technology Tip
On most calculators,
the natural logarithm 
is denoted by , as

illustrated in Example 7.
LN

Study Tip
In Example 7(c), be
sure you see that

gives an error
message on most calculators.
This occurs because the domain
of is the set of positive
real numbers (see Figure 3.20).
So, is undefined.ln��1�

ln x

ln��1�

LN ��� ENTER

LN ENTER

LN ENTER

Properties of Natural Logarithms

1. because 

2. because 

3. and Inverse Properties

4. If then One-to-One Propertyx � y.ln x � ln y,

eln x � x.ln ex � x

e1 � e.ln e � 1

e0 � 1.ln 1 � 0
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Section 3.2 Logarithmic Functions and Their Graphs 197

Example 8 Using Properties of Natural Logarithms

Use the properties of natural logarithms to rewrite each expression.

a. b. c. d.

Solution

a. Inverse Property b. Inverse Property

c. Property 1 d. Property 2

Now try Exercise 81.

2 ln e � 2�1� � 24 ln 1 � 4�0� � 0

eln 5 � 5ln 
1

e
� ln e�1 � �1

2 ln e4 ln 1eln 5ln 
1
e

Example 9 Finding the Domains of Logarithmic Functions

Find the domain of each function.

a. b. c. h�x� � ln x2g�x� � ln�2 � x�f �x� � ln�x � 2�

Algebraic Solution
a. Because is defined only when

it follows that the domain of is 

b. Because is defined only when 

it follows that the domain of is 

c. Because is defined only when 

it follows that the domain of is all real numbers except

Now try Exercise 89.

x � 0.
h

x2 > 0

ln x2

���, 2�.g

2 � x > 0

ln�2 � x�

�2, ��.f

x � 2 > 0

ln�x � 2�
Graphical Solution
a.

b.

c.

−3.0

−4.7 4.7

3.0

The x-coordinates of points
on the graph appear to 
include all real numbers
except 0. So, you can estimate
the domain to be all real
numbers except x = 0.

h(x) = ln x2

−3.0

−4.7 4.7

3.0

The x-coordinates of points
on the graph appear to extend
from −∞ to the left of 2. So,
you can estimate the domain
to be (−∞, 2).

g(x) = ln(2 − x)      

−3.0

−1.7 7.7

3.0

The x-coordinates of points
on the graph appear to extend
from the right of 2 to ∞. So,
you can estimate the domain
to be (2, ∞).

f(x) = ln(x − 2)

In Example 9, suppose you had been asked to analyze the function
How would the domain of this function compare with the domains of

the functions given in parts (a) and (b) of the example?
h�x� � ln�x � 2�.

Technology Tip
When a graphing utility graphs a logarithmic function, it may appear that
the graph has an endpoint. This is because some graphing utilities have 
a limited resolution. So, in this text, a blue curve is placed behind the

graphing utility’s display to indicate where the graph should appear.
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198 Chapter 3 Exponential and Logarithmic Functions

Application
Logarithmic functions are used to model many situations in real life, as shown in the
next example.

Example 10 Psychology

Students participating in a psychology experiment attended several lectures on a 
subject and were given an exam. Every month for a year after the exam, the students
were retested to see how much of the material they remembered. The average scores for
the group are given by the human memory model

where is the time in months. The graph of is shown in Figure 3.21.

a. What was the average score on the original exam 

b. What was the average score at the end of months?

c. What was the average score at the end of months?

Figure 3.21

2 4 6 8 10 12

55

60

65

70

75

80

t

Time (in months)

Human Memory Model

A
ve

ra
ge

 s
co

re

f (t)

f (t) = 75 − 6 ln(t + 1)

t � 6

t � 2

�t � 0�?

ft

0 � t � 12f �t� � 75 � 6 ln�t � 1�,

Algebraic Solution
a. The original average score was

b. After 2 months, the average score was

c. After 6 months, the average score was

Now try Exercise 109.

 	 63.32.

 	 75 � 6�1.9459�

 � 75 � 6 ln 7

 f �6� � 75 � 6 ln�6 � 1�

 	 68.41.

 	 75 � 6�1.0986�

 � 75 � 6 ln 3

 f �2� � 75 � 6 ln�2 � 1�

 � 75.

 � 75 � 6�0�

 � 75 � 6 ln 1

 f �0� � 75 � 6 ln�0 � 1�

Graphical Solution
a.

b.

c.

0
0 12

100

When t = 6, f(6) ≈ 63.32.
So, the average score
after 6 months was 
about 63.32.

0
0 12

100

When t = 2, f(2) ≈ 68.41.
So, the average score
after 2 months was 
about 68.41.

0
0 12

100

When t = 0, f(0) = 75.
So, the original
average score was 75.

Psychologist

dragonfang 2010/used under license from Shutterstock.com
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Section 3.2 Logarithmic Functions and Their Graphs 199

Rewriting Logarithmic Equations In Exercises 7–14,
write the logarithmic equation in exponential form. For
example, the exponential form of is 

7. 8.

9. 10.

11. 12.

13. 14.

Rewriting Exponential Equations In Exercises 15–22,
write the exponential equation in logarithmic form. For
example, the logarithmic form of is 

15. 16.

17. 18.

19. 20.

21. 22.

Evaluating Logarithms In Exercises 23–26, use the 
definition of logarithmic function to evaluate the function
at the indicated value of without using a calculator.

Function Value

23.

24.

25.

26.

Evaluating Common Logarithms on a Calculator In
Exercises 27–30, use a calculator to evaluate the function
at the indicated value of Round your result to three
decimal places.

Function Value

27.

28.

Function Value

29.

30.

Using Properties of Logarithms In Exercises 31–36,
solve the equation for 

31. 32.

33. 34.

35. 36.

Using Properties of Logarithms In Exercises 37– 40, use
the properties of logarithms to simplify the expression.

37. 38.

39. 40.

Graphs of Exponential and Logarithmic Functions In
Exercises 41–44, sketch the graph of Then use the
graph of to sketch the graph of 

41. 42.

43. 44.

Sketching the Graph of a Logarithmic Function In
Exercises 45–50, find the domain, vertical asymptote,
and -intercept of the logarithmic function, and sketch
its graph by hand.

45. 46.

47.

48.

49.

50. y � 2 � log2�x � 1�
y � 1 � log2�x � 2�
y � 2 � log2 x

y � 1 � log2 x

y � log2�x � 1�y � log2�x � 2�

x

g�x� � log4 xg�x� � log15 x

f �x� � 4xf �x� � 15x

g�x� � log5 xg�x� � log3 x

f �x� � 5xf �x� � 3x

g.f
f.

1
4 log4 163 log2 

1
2

6log6 36log4 4
3x

log4 4
3 � xlog8 x � log8 10�1

log3 3
�5 � xlog4 4

2 � x

log5 5 � xlog7 x � log7 9

x.

x � 4.3h�x� � 1.9 log10 x

x � 14.8h�x� � 6 log10 x

x �
4
5f�x� � log10 x

x � 345f �x� � log10 x

x.

x � 10,000g�x� � log10 x

x �
1

1000g�x� � log10 x

x �
1
4f�x� � log16 x

x � 16f �x� � log2 x

x

nt � 10ga � 4

10�3 � 0.0016�2 �
1
36

93�2 � 27811�4 � 3

82 � 6453 � 125

log2 8 � 3.23 � 8

log5 
3�25 �

2
3log2 �2 �

1
2

log16 8 �
3
4log32 4 �

2
5

log10 
1

1000 � �3log7 
1
49 � �2

log3 81 � 4log4 64 � 3

52 � 25.log5 25 � 2

Vocabulary and Concept Check
In Exercises 1–4, fill in the blank(s).

1. The inverse function of the exponential function is called the _______
with base 

2. The base of the _______ logarithmic function is 10, and the base of the _______
logarithmic function is 

3. The inverse properties of logarithms are and _______ .

4. If then _______.

5. What exponential equation is equivalent to the logarithmic equation 

6. For what value(s) of is 

Procedures and Problem Solving

ln x � ln 7?x

loga b � c?

y �x � ey,

loga a
x � x

e.

a.
f�x� � ax

3.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.
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200 Chapter 3 Exponential and Logarithmic Functions

Library of Parent Functions In Exercises 51–54,
use the graph of to match the function with its
graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

51.

52.

53.

54.

Library of Parent Functions In Exercises 55–60,
describe the transformation of the graph of that yields
the graph of 

55.

56.

57.

58.

59.

60.

Rewriting Logarithmic Equations In Exercises 61–68,
write the logarithmic equation in exponential form. For
example, the exponential form of is

61. 62.

63. 64.

65. 66.

67. 68.

Rewriting Exponential Equations In Exercises 69–76,
write the exponential equation in logarithmic form. For
example, the logarithmic form of is

69. 70.

71. 72.

73. 74.

75. 76.

Evaluating the Natural Logarithmic Function In
Exercises 77–80, use a calculator to evaluate the function
at the indicated value of Round your result to three
decimal places.

Function Value

77.

78.

79.

80.

Using Properties of Natural Logarithms In Exercises 
81–88, use the properties of natural logarithms to
rewrite the expression.

81. 82.

83. 84.

85. 86.

87. 88.

Library of Parent Functions In Exercises 89–92,
find the domain, vertical asymptote, and -intercept of
the logarithmic function, and sketch its graph by hand.
Verify using a graphing utility.

89. 90.

91. 92.

Library of Parent Functions In Exercises 93–98,
use the graph of to describe the transformation
that yields the graph of 

93. 94.

95. 96.

97. 98.

Analyzing Graphs of Functions In Exercises 99–108,
(a) use a graphing utility to graph the function, (b) find
the domain, (c) use the graph to find the open intervals
on which the function is increasing and decreasing, and
(d) approximate any relative maximum or minimum 
values of the function. Round your result to three 
decimal places.

99. 100.

101. 102.

103. 104.

105. 106.

107. 108. f �x� � �ln x�2f �x� � �ln x

f �x� � ln 
x

x2 � 1
f �x� � ln 

x2

10

f �x� � ln 
2x

x � 2
f �x� � ln 

x � 2
x � 1

f�x� �
x

ln x
h�x� � 4x ln x

g�x� �
12 ln x

x
f �x� �

x

2
� ln 

x

4

g�x� � ln(x � 2) � 5g�x� � ln�x � 1� � 2

g�x� � ln x � 4g�x� � ln x � 5

g�x� � ln�x � 4�g�x� � ln�x � 3�

g.
f�x� � ln x

f �x� � ln�3 � x�g�x� � ln��x�
h�x� � ln�x � 1�f �x� � ln�x � 1�

x

ln 
1
e4ln eln e

eln 22e ln 1

7 ln e0eln 1.8

�ln eln e2

x � 0.75f�x� � 3 ln x

x �
1
2f�x� � �ln x

x � 18.31f�x� � ln x

x � �42f�x� � ln x

x.

e3/4 � 2.1170 .  .  .�e3 � 4.4816 .  .  .

1
e4 � 0.0183 .  .  .3�e � 1.3956 .  .  .

e2.5 � 12.1824 .  .  .e1.3 � 3.6692 .  .  .

e4 � 54.5981 .  .  .e3 � 20.0855 .  .  .

ln 7.3890 .  .  . � 2.
e2 � 7.3890 .  .  .

ln 3�e �
1
3ln 9 � 2.1972 .  .  .

ln 
1
e2 � �2ln �e �

1
2

ln e3 � 3ln e � 1

ln 4 � 1.3862 .  .  .ln 1 � 0

e1.6094 . . . � 5.
ln 5 � 1.6094 .  .  .

g�x� � 4 � log8�x � 1�f �x� � log8 x,

g�x� � �2 � log8�x � 3�f �x� � log8 x,

g�x� � 3 � log2 xf�x� � log2 x,

g�x� � 4 � log2 xf�x� � log2 x,

g�x� � log10�x � 7�f�x� � log10 x,

g�x� � �log10 xf�x� � log10 x,

g.
f

f �x� � log3�1 � x�
f �x� � �log3�x � 2�
f �x� � �log3 x

f �x� � log3 x � 2

−3

−4 5

3

−3

−2 7

3

−1

−2 7

5

−3

−7 2

3

y � log3 x
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Section 3.2 Logarithmic Functions and Their Graphs 201

109. Psychology Students in a mathematics class were
given an exam and then tested monthly with an
equivalent exam. The average scores for the class are
given by the human memory model

where is the time in months.

(a) What was the average score on the original exam

(b) What was the average score after 4 months?

(c) What was the average score after 10 months?

Verify your answers in parts (a), (b), and (c) using a
graphing utility.

111. Finance A principal invested at and 
compounded continuously, increases to an amount 
times the original principal after years, where

(a) Complete the table and interpret your results.

(b) Use a graphing utility to graph the function.

112. Science The relationship between the number of
decibels and the intensity of a sound in watts per
square meter is given by

(a) Determine the number of decibels of a sound with
an intensity of 1 watt per square meter.

(b) Determine the number of decibels of a sound with
an intensity of watt per square meter.

(c) The intensity of the sound in part (a) is 100 times
as great as that in part (b). Is the number of 
decibels 100 times as great? Explain.

113. Real Estate The model 

approximates the length of a home mortgage of
$150,000 at 6% in terms of the monthly payment. In
the model, is the length of the mortgage in years and

is the monthly payment in dollars.

(a) Use the model to approximate the lengths of a
$150,000 mortgage at 6% when the monthly 
payment is $897.72 and when the monthly
payment is $1659.24.

(b) Approximate the total amounts paid over the term 
of the mortgage with a monthly payment of
$897.72 and with a monthly payment of $1659.24.
What amount of the total is interest costs for each
payment?

114. (p. 192) The rate of
ventilation required in a public school 
classroom depends on the volume of air
space per child. The model

approximates the minimum required rate of
ventilation (in cubic feet per minute per
child) in a classroom with cubic feet of 
air space per child.

(a) Use a graphing utility to graph the function and
approximate the required rate of ventilation in a
room with 300 cubic feet of air space per child.

(b) A classroom of 30 students has an air conditioning
system that moves 450 cubic feet of air per
minute. Determine the rate of ventilation per child.

(c) Use the graph in part (a) to estimate the minimum
required air space per child for the classroom in 
part (b).

(d) The classroom in part (b) has 960 square feet of
floor space and a ceiling that is 12 feet high. Is the
rate of ventilation for this classroom adequate?
Explain.

x
y

100 � x � 1500y � 80.4 � 11 ln x,

x
t

x > 750t � 16.625 ln 
x

x � 750
,

10�2

� � 10 log10
 I

10�12�.

I�

K 1 2 4 6 8 10 12

t

t � �ln K��0.055.
t

K
51

2%P,

�t � 0�?

t

f �t� � 80 � 17 log10�t � 1�,     0 � t � 12

110. MODELING DATA
The table shows the temperatures (in degrees
Fahrenheit) at which water boils at selected pressures

(in pounds per square inch). (Source: Standard
Handbook of Mechanical Engineers)

A model that approximates the data is

(a) Use a graphing utility to plot the data and graph
the model in the same viewing window. How well
does the model fit the data?

(b) Use the graph to estimate the pressure at which the
boiling point of water is 

(c) Calculate when the pressure is 74 pounds per
square inch. Verify your answer graphically.

T

300	F.

T � 87.97 � 34.96 ln p � 7.91�p.

p

T

Pressure, p Temperature, T

5 162.24	

10 193.21	

14.696 (1 atm) 212.00	

20 227.96	

30 250.33	

40 267.25	

60 292.71	

80 312.03	

100 327.81	

samoshkin 2010/used under license from Shutterstock.com
Kirsty Pargeter 2010/used under license from Shutterstock.com
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Conclusions
True or False? In Exercises 115 and 116, determine
whether the statement is true or false. Justify your
answer.

115. You can determine the graph of by
graphing and reflecting it about the -axis.

116. The graph of contains the point 

Think About It In Exercises 117–120, find the value of
the base so that the graph of contains the
given point.

117. 118.

119. 120.

Library of Parent Functions In Exercises 121 and
122, determine which equation(s) may be represented by
the graph shown. (There may be more than one correct
answer.)

121. 122.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

123. Writing Explain why is defined only for
and 

124. Exploration Let and 

(a) Use a graphing utility to graph for and 
in the same viewing window.

(b) Determine which function is increasing at a
greater rate as approaches infinity.

(c) Repeat parts (a) and (b) for 4, and 5. What
do you notice?

125. Exploration
(a) Use a graphing utility to compare the graph of the

function with the graph of each function.

(b) Identify the pattern of successive polynomials
given in part (a). Extend the pattern one more term
and compare the graph of the resulting polynomial
function with the graph of What do you
think the pattern implies?

127. Exploration
(a) Use a graphing utility to complete the table for the

function

(b) Use the table in part (a) to determine what value
approaches as increases without bound. Use

the graphing utility to confirm your result.

128. Writing Use a graphing utility to determine how
many months it would take for the average score in
Example 10 to decrease to 60. Explain your method of
solving the problem. Describe another way that you
can use the graphing utility to determine the answer.
Also, based on the shape of the graph, does the rate at
which a student forgets information increase or
decrease with time? Explain.

Cumulative Mixed Review
Factoring a Polynomial In Exercises 129–136, factor
the polynomial.

129. 130.

131. 132.

133. 134.

135. 136.

Evaluating an Arithmetic Combination of Functions In
Exercises 137 and 138, evaluate the function for

and 

137. 138.

Using Graphs In Exercises 139–142, solve the equation
graphically.

139. 140.

141. 142. �x � 11 � x � 2�3x � 2 � 9

�2x � 3 � 8x5x � 7 � x � 4

� f � g���1�� f � g��2�

g�x� � x3 � 1.f �x� � 3x � 2

3x3 � 5x2 � 12x2x3 � x2 � 45x

36x2 � 4916x2 � 25

16x2 � 16x � 712x2 � 5x � 3

2x2 � 3x � 5x2 � 2x � 3

xf �x�

f�x� �
ln x

x
 .

y � ln x.

y3 � �x � 1� �
1
2�x � 1�2 �

1
3�x � 1�3

y2 � �x � 1� �
1
2�x � 1�2,y1 � x � 1,

y � ln x

n � 3,

x

fn � 2��g

g�x� � x1�n.f �x� � ln x
a > 1.0 < a < 1

loga x

y � ln�x � 2� � 1y � log2�x � 2� � 1

y � 2 � ln�x � 1�y � 2 � log2�x � 1�
y � ln�x � 2� � 1y � log2�x � 1� � 2

y � ln�x � 1� � 2y � log2�x � 1� � 2

x 

y 

x 

y 

� 1
27, 3�� 1

16, 2�
�81, 4��32, 5�

f�x� � logb xb

�27, 3�.f �x� � log3 x

xg�x� � 6x
f�x� � log6 x

202 Chapter 3 Exponential and Logarithmic Functions

x 1 5 10 102 104 106

f�x�

126. C A P S T O N E The following table of values was
obtained by evaluating a function. Determine which of
the statements may be true and which must be false.
Explain your reasoning.

(a) is an exponential 
function of 

(b) is a logarithmic 
function of 

(c) is an exponential function of 

(d) is a linear function of x.y

y.x

x.
y

x.
x 1 2 8

y 0 1 3

y
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Section 3.3 Properties of Logarithms 203

Change of Base
Most calculators have only two types of log keys, one for common logarithms (base 10)
and one for natural logarithms (base ). Although common logs and natural logs are the
most frequently used, you may occasionally need to evaluate logarithms to other bases.
To do this, you can use the following change-of-base formula.

One way to look at the change-of-base formula is that logarithms to base are
simply constant multiples of logarithms to base The constant multiplier is

Example 1 Changing Bases Using Common Logarithms

a.

Use a calculator.

Simplify.

b.

Now try Exercise 13.

Example 2 Changing Bases Using Natural Logarithms

a.

Use a calculator.

Simplify.

b.

Now try Exercise 19.

Notice in Examples 1 and 2 that the result is the same whether common logarithms
or natural logarithms are used in the change-of-base formula.

log2 12 �
ln 12

ln 2
�

2.48491

0.69315
� 3.58

 � 2.32

 �
3.21888

1.38629

loga x �
ln x
ln a

 log4 25 �
ln 25

ln 4

log2 12 �
log10 12

log10 2
�

1.07918

0.30103
� 3.58

 � 2.32

 �
1.39794

0.60206

loga x �
log10 x
log10 a

 log4 25 �
log10 25

log10 4

1
logb a

.

b.
a

e

3.3 Properties of Logarithms

What you should learn
● Rewrite logarithms with 

different bases.

● Use properties of logarithms to

evaluate or rewrite logarithmic

expressions.

● Use properties of logarithms to

expand or condense logarithmic

expressions.

● Use logarithmic functions to

model and solve real-life 

problems.

Why you should learn it
Logarithmic functions can be used to

model and solve real-life problems,

such as the model for the

number of decibels of

a sound in Exercise 107 

on page 208.

Change-of-Base Formula

Let and be positive real numbers such that and Then 
can be converted to a different base using any of the following formulas.

Base Base 10 Base 

loga x �
ln x
ln a

loga x �
log10 x
log10 a

loga x �
logb x

logb a

eb

loga xb � 1.a � 1xb,a,

Tomasz Trojanowski 2010/used under license from Shutterstock.com
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204 Chapter 3 Exponential and Logarithmic Functions

Properties of Logarithms
You know from the previous section that the logarithmic function with base is the
inverse function of the exponential function with base So, it makes sense that the
properties of exponents (see Section 3.1) should have corresponding properties involving
logarithms. For instance, the exponential property

has the corresponding logarithmic property

Example 3 Using Properties of Logarithms

Write each logarithm in terms of ln 2 and ln 3.

a. ln 6

b.

Solution
a. Rewrite 6 as 

Product Property

b. Quotient Property

Rewrite 27 as 

Power Property

Now try Exercise 21.

Example 4 Using Properties of Logarithms

Use the properties of logarithms to verify that 

Solution
Rewrite as 

Power Property

Simplify.

Now try Exercise 45.

 � log10 100

 � ���1� log10 100

100�1.1
100 �log10  1

100 � �log10�100�1�

�log10  1
100 � log10 100.

 � ln 2 � 3 ln 3

33. � ln 2 � ln 33

 ln  
2

27
� ln 2 � ln 27

 � ln 2 � ln 3

2 � 3. ln 6 � ln�2 � 3�

ln  
2

27

loga1 � 0.

a0 � 1

a.
a

Study Tip
There is no general
property that can be
used to rewrite

Specifically,
is not equal to

loga x � loga y .
loga�x � y�
loga�u ± v�.

Properties of Logarithms (See the proof on page 251.)

Let be a positive real number such that and let be a real number. If 
and are positive real numbers, then the following properties are true.

Logarithm with Base  Natural Logarithm

1. Product Property:

2. Quotient Property:

3. Power Property: ln un � n ln uloga u
n � n loga u

ln  
u

v
� ln u � ln vloga 

u

v
� loga u � loga v

ln�uv� � ln u � ln vloga�uv� � loga u � loga v

a

v
una � 1,a

1111572836_0303.qxd  9/29/10  12:22 PM  Page 204

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 3.3 Properties of Logarithms 205

Rewriting Logarithmic Expressions
The properties of logarithms are useful for rewriting logarithmic expressions in forms
that simplify the operations of algebra. This is true because they convert complicated
products, quotients, and exponential forms into simpler sums, differences, and products,
respectively.

Example 5 Expanding Logarithmic Expressions

Use the properties of logarithms to expand each expression.

a.

b.

Solution
a. Product Property

Power Property

b.

Quotient Property

Power Property

Now try Exercise 63.

In Example 5, the properties of logarithms were used to expand logarithmic 
expressions. In Example 6, this procedure is reversed and the properties of 
logarithms are used to condense logarithmic expressions.

Example 6 Condensing Logarithmic Expressions

Use the properties of logarithms to condense each expression.

a.

b.

c.

Solution
a. Power Property

Product Property

b. Power Property

Quotient Property

c. Product Property

Power Property

Now try Exercise 81.

 � log2
3�x�x � 4�

 � log2�x�x � 4��1�3

 13�log2 x � log2�x � 4�� �
1
3	log2�x�x � 4��


 � ln 
�x � 2�2

x

 2 ln�x � 2� � ln x � ln�x � 2�2 � ln x

 � log10 ��x�x � 1�3�
 12 log10 x � 3 log10�x � 1� � log10 x

1�2 � log10�x � 1�3

1
3�log2 x � log2�x � 4��
2 ln�x � 2� � ln x

1
2 log10 x � 3 log10�x � 1�

 �
1

2
 ln�3x � 5� � ln 7

 � ln�3x � 5�1�2 � ln 7

 ln 
�3x � 5

7
� ln 

�3x � 5�1�2

7

� log4 5 � 3 log4 x �  log4 y

� log4 5 � log4 x
3 � log4 ylog4 5x3y

ln 
�3x � 5

7

log4 5x3y

Rewrite radical using
rational exponent.

Rewrite with a 
radical.

Explore the Concept
Use a graphing utility
to graph the functions

and

in the same viewing window.
Does the graphing utility show
the functions with the same
domain? Should it? Explain
your reasoning.

y � ln 
x

x � 3

y � ln x � ln�x � 3�

Adam Borkowski 2010/used under license from Shutterstock.com 
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206 Chapter 3 Exponential and Logarithmic Functions

Application

Example 7 Finding a Mathematical Model

The table shows the mean distance from the sun and the period (the time it takes a
planet to orbit the sun) for each of the six planets that are closest to the sun. In the table,
the mean distance is given in astronomical units (where the Earth’s mean distance is
defined as 1.0), and the period is given in years. The points in the table are plotted in
Figure 3.22. Find an equation that relates and 

Solution
From Figure 3.22, it is not clear how to find an equation that relates and To solve
this problem, take the natural log of each of the - and -values in the table. This 
produces the following results.

Now, by plotting the points in the table, you can see that all six of the points appear to
lie in a line, as shown in Figure 3.23. To find an equation of the line through these
points, you can use one of the following methods.

yx
x.y

x.y

yx

Planet Mercury Venus Earth Mars Jupiter Saturn

Mean distance, x 0.387 0.723 1.000 1.524 5.203 9.555

Period, y 0.241 0.615 1.000 1.881 11.860 29.420

Planet Mercury Venus Earth Mars Jupiter Saturn

ln x � X �0.949 �0.324 0.000 0.421 1.649 2.257

ln y � Y �1.423 �0.486 0.000 0.632 2.473 3.382

Method 1: Algebraic
Choose any two points to determine 
the slope of the line. Using the two 
points and you can 
determine that the slope of the line is

By the point-slope form, the equation 
of the line is

where and You can
therefore conclude that

Now try Exercise 109.

ln y �
3
2

 ln x.

X � ln x.Y � ln y

Y �
3
2X

m �
0.632 � 0
0.421 � 0

� 1.5 �
3
2

.

�0, 0�,�0.421, 0.632�

Method 2: Graphical
Using the linear regression feature of a
graphing utility, you can find a linear
model for the data, as shown in Figure
3.24. You can approximate this model to
be where and

From the model, you can see
that the slope of the line is So, you can
conclude that

Figure 3.24

ln y �
3
2 ln x.

3
2.

X � ln x.
Y � ln yY � 1.5X,

Pe
ri

od
 (

in
 y

ea
rs

) 

Mean distance 
(in astronomical units) 

1 2 3 4 5 6 7 8 9 10 

5 

10 

15 

20 

25 

30 

y 

x 

Mercury 
Venus 

Earth 

Mars 

Jupiter 

Saturn 

Figure 3.22

−2 4

−2

4

Figure 3.23

In Example 7, try to convert the final equation to form. You will get a
function of the form which is called a power model.y � axb,

y � f �x�

4x6/iStockphoto.com

1111572836_0303.qxd  9/29/10  12:22 PM  Page 206

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 3.3 Properties of Logarithms 207

Changing the Base In Exercises 5–12, rewrite the 
logarithm as a ratio of (a) common logarithms and 
(b) natural logarithms.

5. 6.

7. 8.

9. 10.

11. 12.

Changing the Base In Exercises 13–20, evaluate the
logarithm using the change-of-base formula. Round
your result to three decimal places.

13. 14.

15. 16.

17. 18.

19. 20.

Using Properties of Logarithms In Exercises 21–24,
rewrite the expression in terms of and 

21. 22.

23. 24.

Using Properties to Evaluate Logarithms In Exercises
25–28, approximate the logarithm using the properties
of logarithms, given the values 

and Round your result
to four decimal places.

25. 26.
27. 28.

Graphing a Logarithm In Exercises 29–36, use the
change-of-base formula and a
graphing utility to graph the function.

29. 30.

31. 32.

33. 34.

35. 36.

Simplifying a Logarithm In Exercises 37– 44, use the
properties of logarithms to rewrite and simplify the 
logarithmic expression.

37. 38.

39. 40.

41. 42.

43. 44.

Using Properties of Logarithms In Exercises 45 and 46,
use the properties of logarithms to verify the equation.

45.

46.

Expanding Logarithmic Expressions In Exercises
47–64, use the properties of logarithms to expand the
expression as a sum, difference, and/or constant multiple
of logarithms. (Assume all variables are positive.)

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64. logb 
�xy4

z4
ln 

x4�y

z5

ln 
x

�x2 � 1
x > 1ln 

x2 � 1

x3
,

ln�x2

y3
ln 3�x

y

log4 xy6 z4log6 ab3c2

ln 
xy

z
ln xyz

ln 3�tln �z

log6 z
�3log8 x

4

log10 
7

z
log10 

t

8

log10 10zlog10 5x

�ln 24 � ��3 ln 2 � ln 3�
log5 

1
250 � �3 � log5 2

ln 
e5

7
ln 

6

e2

ln 8e3ln 5e6

log3 9
2 � 24log2 4

2 � 34

log9 243log4 8

log5�x
3�f�x� � log1�2�x

2�

f�x� � log3�xf�x� � log1�4 x
2

f�x� � log1�3�x � 1�f�x� � log1�2�x � 2�
f�x� � log2�x � 1�f�x� � log3�x � 2�

loga x � ln x�/ln a�

logb 
16
25logb �3

logb 30logb 25

logb 5 y 0.8271.logb 3 y 0.5646,
logb 2 y 0.3562,

ln 52ln 25
4

ln 500ln 20

ln 5.ln 4

log20 175log15 1460

log4 0.045log6 0.9

log1�8 64log1�2 4

log7 4log3 7

log7.1 xlog2.6 x

loga 
4
5loga 

3
10

log1�3 xlog1�5 x

log3 xlog5 x

Vocabulary and Concept Check
In Exercises 1 and 2, fill in the blank(s).

1. You can evaluate logarithms to any base using the _______ formula.

2. Two properties of logarithms are _______ and _______.

3. Is or correct?

4. Which property of logarithms can you use to condense the expression 

Procedures and Problem Solving

ln x � ln 2?

log3 24 �
ln 24
ln 3

log3 24 �
ln 3

ln 24

ln�uv� �� n loga u

3.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.
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208 Chapter 3 Exponential and Logarithmic Functions

I 10�4 10�6 10�8 10�10 10�12 10�14

�

Algebraic-Graphical-Numerical In Exercises 65–68,
(a) use a graphing utility to graph the two equations in
the same viewing window and (b) use the table feature of
the graphing utility to create a table of values for each
equation. (c) What do the graphs and tables suggest?
Verify your conclusion algebraically.

65.

66.

67.

68.

Condensing Logarithmic Expressions In Exercises
69–84, condense the expression to the logarithm of a 
single quantity.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81.

82.

83.

84.

Algebraic-Graphical-Numerical In Exercises 85–88,
(a) use a graphing utility to graph the two equations in
the same viewing window and (b) use the table feature of 
the graphing utility to create a table of values for each
equation. (c) What do the graphs and tables suggest?
Verify your conclusion algebraically.

85.

86.

87.

88.

Algebraic-Graphical-Numerical In Exercises 89–92,
(a) use a graphing utility to graph the two equations in
the same viewing window and (b) use the table feature of
the graphing utility to create a table of values for each
equation. (c) Are the expressions equivalent? Explain.
Verify your conclusion algebraically.

89.
90.

91.

92.

Using Properties to Evaluate Logarithms In Exercises
93–106, find the exact value of the logarithm without
using a calculator. If this is not possible, state the reason.

93. 94.

95. 96.

97. 98.

99. 100.

101.

102.

103.

104.

105.

106.

107. (p. 203) The relationship
between the number of decibels and the
intensity of a sound in watts per square meter
is given by

(a) Use the properties of logarithms to write the
formula in a simpler form.

(b) Use a graphing utility to complete the table. Verify
your answers algebraically.

108. Psychology Students participating in a psychology
experiment attended several lectures and were given
an exam. Every month for the next year, the students
were retested to see how much of the material they
remembered. The average scores for the group are
given by the human memory model

where is the time (in months).

(a) Use a graphing utility to graph the function over
the specified domain.

(b) What was the average score on the original exam

(c) What was the average score after 6 months?

(d) What was the average score after 12 months?

(e) When did the average score decrease to 75?

�t � 0�?

t

f �t� � 90 � 15 log10�t � 1�,     0 � t � 12

� � 10 log10� I

10�12�.

I
�

ln 5�e3

ln 
1

�e

ln e4.5

2 ln e4

ln e6 � 2 ln e5

ln e3 � ln e7

log4 2 � log4 32log5 75 � log5 3

log4��16�log2��4�
log5� 1

125�log4 163.4

log6 
3�6log3 9

y2 � ln x �
1
4 ln�x2 � 1�y1 �

1
4 ln�x4�x2 � 1��,

y2 � ln�x2 � 4�y1 � ln�x � 2� � ln�x � 2�,

y2 � ln 4x2y1 � 2�ln 2 � ln x�,
y2 � 2 ln xy1 � ln x2,

y2 � ln� �x
x � 2�y1 �

1
2

 ln x � ln�x � 2�,

y2 � ln�x�x � 1�y1 � ln x �
1
2 ln�x � 1�,

y2 � ln�36�x2 � 1�2�y1 � 2�ln 6 � ln�x2 � 1��,

y2 � ln� 64
�x2 � 1�2�y1 � 2�ln 8 � ln�x2 � 1��,

2�ln x � ln�x � 1� � ln�x � 1��

1
3�2 ln�x � 3� � ln x � ln�x2 � 1��
4�ln z � ln�z � 5�� � 2 ln�z � 5�
ln x � 2�ln�x � 2� � ln�x � 2��

3 ln x � 2 ln y � 4 ln zln�x � 2� � ln�x � 2�
ln x � 2 ln�x � 2�ln x � 3 ln�x � 1�
2 ln x � ln�x � 1�1

2 ln�x2 � 4�

5
2 log7�z � 4�2 log2�x � 3�
log5 8 � log5 tlog4 z �  log4 y

ln y � ln zln x �  ln 4

y2 � ln 4 � 3 ln xy1 � ln 4x3,

y2 � 4 ln x � ln�x � 2�y1 � ln� x4

x � 2�,

y2 �
1

2
 ln x � ln�x � 2�y1 � ln� �x

x � 2�,

y2 � 3 ln x � ln�x � 4�y1 � ln�x3�x � 4��,

Tomasz Trojanowski 2010/used under license from Shutterstock.com
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A beaker of liquid at an initial temperature of is
placed in a room at a constant temperature of 
The temperature of the liquid is measured every 5 minutes
during a half-hour period. The results are recorded as
ordered pairs of the form where is the time (in
minutes) and is the temperature (in degrees Celsius).

(a) The graph of the temperature of the room should be
an asymptote of the graph of the model for the data.
Subtract the room temperature from each of the
temperatures in the ordered pairs. Use a graphing
utility to plot the data points and 

(b) An exponential model for the data is
given by

Solve for and graph the model. Compare the
result with the plot of the original data.

(c) Take the natural logarithms of the revised
temperatures. Use the graphing utility to plot the
points and observe that the points
appear linear. Use the regression feature of the 
graphing utility to fit a line to the data. The 
resulting line has the form

Use the properties of logarithms to solve for 
Verify that the result is equivalent to the model in
part (b).

(d) Fit a rational model to the data. Take the
reciprocals of the -coordinates of the revised data
points to generate the points

Use the graphing utility to plot these points and
observe that they appear linear. Use the regression
feature of the graphing utility to fit a line to the
data. The resulting line has the form

Solve for and use the graphing utility to graph
the rational function and the original data points.

T,

1

T � 21
� at � b.

�t, 
1

T � 21�.

y

T.

ln�T � 21� � at � b.

�t, ln�T � 21��

T

T � 21 � 54.4�0.964�t.

�t, T � 21�
�t, T � 21�.�t, T �

�20, 46.3	�, �25, 42.5	�, �30, 39.6	�
�0, 78.0	�, �5, 66.0	�, �10, 57.5	�, �15, 51.2	�,

T
t�t, T �,

21	C.
78	C

120. C A P S T O N E Show that each expression is 
equivalent to Then write three more expressions
that are equivalent to 

(a) (b) (c)

(d) (e) �log10 2 � log10 4� 
 log10 eln 16 � ln 2

�3 ln 12�ln 183 ln 2

ln 8.
ln 8.

Section 3.3 Properties of Logarithms 209

110. Writing Write a short paragraph explaining why 
the transformations of the data in Exercise 109 were
necessary to obtain the models. Why did taking the
logarithms of the temperatures lead to a linear scatter
plot? Why did taking the reciprocals of the
temperatures lead to a linear scatter plot?

Conclusions
True or False? In Exercises 111–116, determine whether
the statement is true or false given that 
where Justify your answer.

111.

112.

113. 114.

115. If then 

116. If then 

117. Error Analysis Describe the error.

118. Think About It Consider the functions below.

Which two functions have identical graphs? Verify
your answer by using a graphing utility to graph all
three functions in the same viewing window.

119. Exploration For how many integers between 1 and
20 can the natural logarithms be approximated 
given that and

Approximate these logarithms. (Do
not use a calculator.)

121. Think About It Does have the
same domain as Explain.

122. Proof Prove that 

Cumulative Mixed Review
Using Rules of Exponents In Exercises 123–126, simplify
the expression.

123. 124.

125. 126.

Solving Polynomial Equations In Exercises 127–130,
find all solutions of the equation.

127. 128.

129. 130. 9x4 � 37x2 � 4 � 0x4 � 19x2 � 48 � 0

2x3 � 20x2 � 50x � 0x2 � 6x � 2 � 0

xy�x�1 � y�1��1�18x3y4��3�18x3y4�4

�2x3

3y �
�324xy�2

16x�3y

loga x

loga�b x
� 1 � loga 

1

b
.

y2 � ln x � ln�x � 2�?
y1 � ln�x�x � 2��

ln 5 � 1.6094?
ln 3 � 1.0986,ln 2 � 0.6931,

f �x� � ln 
x

2
,    g�x� �

ln x

ln 2
,    h�x� � ln x � ln 2

ln� x2

�x2 � 4� �
ln x2

ln�x2 � 4

x > e.f �x� > 0,

0 < x < e.f �x� < 0,

� f�x��n � nf�x��f�x� �
1
2 f �x�

f�x � a� � f�x� � f�a�,  x > a

f�ax� � f�a� � f�x�,  a > 0

x > 0.
f x� � ln x,

109. MODELING DATA
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210 Chapter 3 Exponential and Logarithmic Functions

3.4 Solving Exponential and Logarithmic Equations

What you should learn
● Solve simple exponential 

and logarithmic equations.

● Solve more complicated 

exponential equations.

● Solve more complicated 

logarithmic equations.

● Use exponential and logarithmic 

equations to model and solve

real-life problems.

Why you should learn it
Exponential and logarithmic equations

can be used to model and solve 

real-life problems. For instance,

Exercise 148 on page 219 shows how

to use an exponential function to

model the average heights of men

and women.

Strategies for Solving Exponential and Logarithmic Equations

1. Rewrite the original equation in a form that allows the use of the One-to-One
Properties of exponential or logarithmic functions.

2. Rewrite an exponential equation in logarithmic form and apply the Inverse
Property of logarithmic functions.

3. Rewrite a logarithmic equation in exponential form and apply the Inverse
Property of exponential functions.

Introduction
So far in this chapter, you have studied the definitions, graphs, and properties of 
exponential and logarithmic functions. In this section, you will study procedures for
solving equations involving exponential and logarithmic functions.

There are two basic strategies for solving exponential or logarithmic equations.
The first is based on the One-to-One Properties and the second is based on the Inverse
Properties. For and the following properties are true for all and for
which 

and

are defined.

One-to-One Properties

if and only if

if and only if

Inverse Properties

Example 1 Solving Simple Exponential and Logarithmic Equations

Original Rewritten
Equation Equation Solution Property

a. One-to-One

b. One-to-One

c. One-to-One

d. One-to-One

e. Inverse

f. Inverse

g. Inverse

h. Inverse

Now try Exercise 27.

The strategies used in Example 1 are summarized as follows.

x � 813log3x � 34log3 x � 4

x � 10�1 �
1
1010 log10 x � 10�1log10 x � �1

x � e�3eln x � e�3ln x � �3

x � ln 7ln ex � ln 7ex � 7

x � �23�x � 32�1
3�x

� 9

x � 3ln x � ln 3ln x � ln 3 � 0

x � 8log4 x � log4 8log4 x � log4 8 � 0

x � 52x � 252x � 32

 loga a
x � x

 aloga x � x

x � y.loga x � loga y

x � y.ax � ay

loga yloga x

yxa � 1,a > 0

Orange Line Media 2010/used under license from Shutterstock.com
GaryAlvis/iStockphoto.com
Allkindza/iStockphoto.com
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Section 3.4 Solving Exponential and Logarithmic Equations 211

Example 2 Solving Exponential Equations

Solve each equation.

a.

b. 3�2x� � 42

ex � 72

Algebraic Solution
a. Write original equation.

Take natural log of each side.

Inverse Property

Use a calculator.

The solution is Check this in the 
original equation.

b. Write original equation.

Divide each side by 3.

Take log (base 2) of each side.

Inverse Property

Change-of-base formula

Use a calculator.

The solution is Check this in the
original equation.

Now try Exercise 33.

x � log2 14 � 3.81.

 x � 3.81

 x �
ln 14
ln 2

 x � log2 14

 log2 2
x � log2 14

 2x � 14

 3�2x� � 42

x � ln 72 � 4.28.

 x � 4.28

 x � ln 72

 ln ex � ln 72

 ex � 72

Graphical Solution
To solve an equation using a graphing utility, you can graph the
left- and right-hand sides of the equation and use the intersect
feature.

a.

b.

0 5
0

60

y1 = 3(2x)
y2 = 42

The intersection point is
about (3.81, 42). So, the
solution is x ≈ 3.81.

0 5
0

100

y1 = ex
y2 = 72

The intersection point is
about (4.28, 72). So, the
solution is x ≈ 4.28.

Example 3 Solving an Exponential Equation

Solve 4e2x � 3 � 2.

Algebraic Solution

Write original equation.

Add 3 to each side.

Divide each side by 4.

Take natural log of each side.

Inverse Property

Divide each side by 2.

Use a calculator.

The solution is

Check this in the original equation.

Now try Exercise 61.

x �
1
2 ln 54 � 0.11.

 x � 0.11

 x �
1
2 ln 54

 2x � ln 54

 ln e2x � ln 5
4

 e2x �
5
4

 4e2x � 5

 4e2x � 3 � 2

Graphical Solution
Rather than using the procedure in Example 2, another way to
solve the equation graphically is first to rewrite the equation as

and then use a graphing utility to graph

Use the zero or root feature of the graphing utility to approximate
the value of for which as shown in Figure 3.25.

Figure 3.25

−1 1

−10

10

The zero occurs at
x ≈ 0.11. So, the
solution of the 
original equation
is x ≈ 0.11.

y = 4e2x − 5

y � 0,x

y � 4e2x � 5.

4e2x � 5 � 0

Solving Exponential Equations
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212 Chapter 3 Exponential and Logarithmic Functions

Example 4 Solving an Exponential Equation

Solve 

Solution
Write original equation.

Add 4 to each side.

Divide each side by 2.

Take log (base 3) of each side.

Inverse Property

Add 5 to each side.

Divide each side by 2.

Use a calculator.

The solution is Check this in the original equation.

Now try Exercise 65.

When an equation involves two or more exponential expressions, you can 
still use a procedure similar to that demonstrated in the previous three examples.
However, the algebra is a bit more complicated.

t �
5
2 �

1
2 log3 7.5 � 3.42.

 t � 3.42

 t �
5
2 �

1
2 log3 7.5

 2t � 5 � log3 7.5

 2t � 5 � log3 
15
2

 log3 3
2t�5 � log3 

15
2

 32t�5 �
15
2

 2�32t�5� � 15

 2�32t�5� � 4 � 11

2�32t�5� � 4 � 11.

Example 5 Solving an Exponential Equation in Quadratic Form

Solve e2x � 3ex � 2 � 0.

Algebraic Solution

Write original equation.

Write in quadratic form.

Factor.

Set 1st factor equal to 0.

Add 2 to each side.

Solution

Set 2nd factor equal to 0.

Add 1 to each side.

Inverse Property

Solution

The solutions are

and 

Check these in the original equation.

Now try Exercise 71.

x � 0.x � ln 2 � 0.69

 x � 0

 x � ln 1

 ex � 1

ex � 1 � 0

 x � ln 2

 ex � 2

 ex � 2 � 0

 �ex � 2��ex � 1� � 0

 �ex�2 � 3ex � 2 � 0

 e2x � 3ex � 2 � 0

Graphical Solution
Use a graphing utility to graph and then
find the zeros.

Figure 3.26

Figure 3.27

From Figures 3.26 and 3.27, you can conclude that the solutions
are and x � 0.69.x � 0

−3 3

−1

3 y = e2x − 3ex + 2

A zero occurs at
x ≈ 0.69.

−3 3

−1

3 y = e2x − 3ex + 2

A zero occurs at
x = 0.

y � e2x � 3ex � 2

Study Tip
Remember that to 
evaluate a logarithm
such as you

need to use the change-of-base
formula.

log3 7.5,

leloft1911/iStockphoto.com
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Section 3.4 Solving Exponential and Logarithmic Equations 213

Solving Logarithmic Equations
To solve a logarithmic equation, you can write it in exponential form.

Logarithmic form

Exponentiate each side.

Exponential form

This procedure is called exponentiating each side of an equation. It is applied after the
logarithmic expression has been isolated.

Example 6 Solving Logarithmic Equations

Solve each logarithmic equation.

a.

b.

Solution
a. Write original equation.

Exponentiate each side.

Inverse Property

Multiply each side by 

Use a calculator.

The solution is Check this in the original equation.

b. Write original equation.

One-to-One Property

Solve for 

The solution is Check this in the original equation.

Now try Exercise 93.

x � 2.

x. x � 2

 5x � 1 � x � 7

 log3�5x � 1� � log3�x � 7�

x �
1
3e2 � 2.46.

 x � 2.46

1
3. x �

1
3e2

 3x � e2

 eln 3x � e2

  ln 3x � 2

log3�5x � 1� � log3�x � 7�

ln 3x � 2

 x � e3

 eln x � e3

 ln x � 3

Example 7 Solving a Logarithmic Equation

Solve 5 � 2 ln x � 4.

Algebraic Solution

Write original equation.

Subtract 5 from each side.

Divide each side by 2.

Exponentiate each side.

Inverse Property

Use a calculator.

The solution is Check this in the original
equation.

Now try Exercise 97.

x � e�1�2 � 0.61.

 x � 0.61

 x � e�1�2

 eln x � e�1�2

 ln x � �
1
2

 2 ln x � �1

 5 � 2 ln x � 4

Graphical Solution

0 1
0

6

y1 = 5 + 2 ln x

y2 = 4
The intersection point is
about (0.61, 4). So, the
solution is x ≈ 0.61.
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214 Chapter 3 Exponential and Logarithmic Functions

Example 8 Solving a Logarithmic Equation

Solve 

Solution
Write original equation.

Divide each side by 2.

Exponentiate each side (base 5).

Inverse Property

Divide each side by 3.

The solution is Check this in the original equation. Or, perform a graphical
check by graphing

and

in the same viewing window. The two graphs should intersect at

and

as shown in Figure 3.28.

Now try Exercise 99.

Because the domain of a logarithmic function generally does not include all real
numbers, you should be sure to check for extraneous solutions of logarithmic equations,
as shown in the next example.

y � 4

x �
25
3 � 8.33

y2 � 4y1 � 2 log5 3x � 2�log10 3x
log10 5

�

x �
25
3 .

 x �
25
3

 3x � 25

 5log5 3x � 52

 log5 3x � 2

 2 log5 3x � 4

2 log5 3x � 4.

Example 9 Checking for Extraneous Solutions

Solve ln�x � 2� � ln�2x � 3� � 2 ln x.

Algebraic Solution

Write original equation.

Multiply binomials.

One-to-One Property

Write in general form.

Factor.

Set 1st factor equal to 0.

Set 2nd factor equal to 0.

Finally, by checking these two “solutions” in the original equation, you
can conclude that is not valid. This is because when 

which is invalid because is not in the domain of the natural logarithmic
function. So, the only solution is 

Now try Exercise 109.

x � 6.
�1

ln�x � 2� � ln�2x � 3� � ln��1� � ln��1�

x � 1,x � 1

x � 1 x � 1 � 0

x � 6 x � 6 � 0

 �x � 6��x � 1� � 0

 x2 � 7x � 6 � 0

 2x2 � 7x � 6 � x2

 ln�2x2 � 7x � 6� � ln x2

 ln��x � 2��2x � 3�	 � ln x2

 ln�x � 2� � ln�2x � 3� � 2 ln x

Graphical Solution
First rewrite the original equation as 

Then use a graphing utility to graph the equation 

and find the zeros (see Figure 3.29).

Figure 3.29

0 9

−3

3

A zero occurs at
x = 6. So, the
solution is x = 6.

y = ln(x − 2) + ln(2x − 3) − 2 ln x

ln�x � 2� � ln�2x � 3� � 2 ln xy �

ln x � 0.ln�x � 2� � ln�2x � 3� � 2Use properties of 
logarithms.

−2 13

−2

8
y1 = 2

log10 3x
log10 5 ))

y2 = 4

Figure 3.28
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Section 3.4 Solving Exponential and Logarithmic Equations 215

Example 10 The Change-of-Base Formula

Prove the change-of-base formula:

Solution
Begin by letting

and writing the equivalent exponential form

Now, taking the logarithms with base of each side produces the following.

Power Property

Divide each side by 

Replace with 

Now try Exercise 113.

Equations that involve combinations of algebraic functions, exponential functions,
and/or logarithmic functions can be very difficult to solve by algebraic procedures.
Here again, you can take advantage of a graphing utility.

Example 11 Approximating the Solution of an Equation

Approximate (to three decimal places) the solution of 

Solution
First, rewrite the equation as

Then use a graphing utility to graph

as shown in Figure 3.30. From this graph, you can see that the equation has two 
solutions. Next, using the zero or root feature, you can approximate the two solutions
to be and 

Check

Write original equation.

Substitute 0.138 for 

Solution checks. ✓

Substitute 1.564 for 

Solution checks. ✓

So, the two solutions and seem reasonable.

Now try Exercise 119.

x � 1.564x � 0.138

 0.4472 � 0.4461

x. ln�1.564� �? �1.564�2 � 2

 �1.9805 � �1.9810

x. ln�0.138� �? �0.138�2 � 2

 ln x � x2 � 2

x � 1.564.x � 0.138

y � �x2 � 2 � ln x

ln x � x2 � 2 � 0.

ln x � x2 � 2.

loga x.y loga x �
logb x

logb a

logb a. y �
logb x

logb a

 y logb a � logb x

 logb a
y � logb x

b

ay � x.

y � loga x

loga x �
logb x

logb a
.

−0.2 1.8

−2

2
y = −x2 + 2 + ln x

Figure 3.30
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216 Chapter 3 Exponential and Logarithmic Functions

Applications

Example 12 Doubling an Investment

You have deposited $500 in an account that pays 6.75% interest, compounded 
continuously. How long will it take your money to double?

Solution
Using the formula for continuous compounding, you can find that the balance in the
account is

To find the time required for the balance to double, let and solve the result-
ing equation for 

Substitute 1000 for 

Divide each side by 500.

Take natural log of each side.

Inverse Property

Divide each side by 0.0675.

Use a calculator.

The balance in the account will double after approximately 10.27 years. This result is
demonstrated graphically in Figure 3.31.

Now try Exercise 143.

Example 13 Average Salary for Public School Teachers

From 1985 through 2007, the average salary (in thousands of dollars) for 
public school teachers for the year can be modeled by the equation

where represents 1985. During which year did the average salary for public
school teachers reach $45,000? (Source: National Education Association)

Solution

Write original equation.

Substitute 45 for 

Add 2.983 to each side.

Divide each side by 15.206.

Exponentiate each side.

Inverse Property

Use a calculator.

The solution is years. Because represents 1985, it follows that the 
average salary for public school teachers reached $45,000 in 2003.

Now try Exercise 149.

t � 5t � 23.47

 t � 23.47

 t � e47.983�15.206

 eln t � e47.983�15.206

 ln t �
47.983
15.206

 15.206 ln t � 47.983

y. �2.983 � 15.206 ln t � 45

 �2.983 � 15.206 ln t � y

t � 5

5 � t � 27y � �2.983 � 15.206 ln t,

t
y

 t � 10.27

 t �
ln 2

0.0675

 0.0675t � ln 2

 ln e0.0675t � ln 2

 e0.0675t � 2

A. 500e0.0675t � 1000

t.
A � 1000,

A � Pert � 500e0.0675t.

0 12
0

1200

(10.27, 1000) 

(0, 500) A = 500e0.0675t

Figure 3.31

Teacher

 

4x6/iStockphoto.com
pandapaw 2010/used under license from Shutterstock.com
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Section 3.4 Solving Exponential and Logarithmic Equations 217

Checking Solutions In Exercises 7–14, determine
whether each -value is a solution of the equation.

7. 8.

(a) (a)

(b) (b)

9. 10.

(a) (a)

(b) (b)

(c) (c)

11. 12.

(a) (a)

(b) (b)

(c) (c)

13. 14.

(a) (a)

(b) (b)

(c) (c)

Solving Equations Graphically In Exercises 15–22, use a
graphing utility to graph and in the same viewing
window. Approximate the point of intersection of the
graphs of and Then solve the equation 
algebraically.

15. 16.

17. 18.

19. 20.

21. 22.

Solving an Exponential Equation In Exercises 23–36,
solve the exponential equation.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

Solving a Logarithmic Equation In Exercises 37–46,
solve the logarithmic equation.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

Using Inverse Properties In Exercises 47–54, simplify
the expression.

47. 48.

49. 50.

51.

52.

53.

54. 3 � ln�ex2�2�
5 � eln�x2�1�

�4 � eln x4

�1 � ln e2x

eln�x2�2�eln x2

ln e2x �1ln ex2

ln�3x � 5� � 8ln�2x � 1� � 5

log10 x � �
1
2log10 x � �1

logx 25 � 2logx 625 � 4

ln x � �14ln x � �9

ln x � ln 2 � 0ln x � ln 5 � 0

3x�1 �
1
812x�3 � 256

5�8x� � 3256�10x� � 216

ex � 66ex � 14

�3
4�x

�
27
64�2

3�x
�

81
16

�1
2�x

� 32�1
8�x

� 64

7x �
1
495x �

1
625

3x � 2434x � 16

g�x� � 3x � 2g�x� � 2x � 5

f �x� � ln ex�2f �x� � ln ex�1

g�x� � 6g�x� � 20

f �x� � 3 log5 xf �x� � 4 log3 x

g�x� � 13g�x� � 10

f �x� � 2�x�1 � 3f �x� � 5x�2 � 15

g�x� � 9g�x� � 8

f �x� � 27xf �x� � 2x

f 
x� � g
x�g.f

gf

x �
1
2x � 1 � ln 3.8

x � 4073
400x � 45.7012

x � e2.5 � 2x � 1 � e3.8

ln�2 � x� � 2.5ln�x � 1� � 3.8

x � 7.2x �
64
3

x �
108
5x � �4

x � 20.2882x � 21.3560

log6�5
3 x� � 2log4�3x� � 3

x � ln 16x � 1.2189

x � 3.7081x � �2 � ln 25

x � 1 � ln 15x � �2 � e25

4ex�1 � 603ex�2 � 75

x � 2x � 2

x � �1x � 5

23x�1 � 3242x�7 � 64

x

Vocabulary and Concept Check
In Exercise 1 and 2, fill in the blank.

1. To solve exponential and logarithmic equations, you can use the following One-to-One
and Inverse Properties.

(a) if and only if _______ . (b) if and only if _______ .

(c) _______ (d) _______

2. An _______ solution does not satisfy the original equation.

3. What is the value of 

4. Can you solve using a One-to-One Property?

5. What is the first step in solving the equation 

6. Do you solve by using a One-to-One Property or an Inverse Property?

Procedures and Problem Solving

log4 x � 2

3 � ln x � 10?

5x � 125

ln e7?

loga a
x �aloga x �

loga x � loga yax � ay

3.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.
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218 Chapter 3 Exponential and Logarithmic Functions

Solving an Exponential Equation In Exercises 55–80,
solve the exponential equation algebraically. Round your
result to three decimal places. Use a graphing utility to
verify your answer.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69.

70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

Algebraic-Graphical-Numerical In Exercises 81 and 82,
(a) complete the table to find an interval containing the
solution of the equation, (b) use a graphing utility to
graph both sides of the equation to estimate the solution,
and (c) solve the equation algebraically. Round your
results to three decimal places.

81.

82.

Solving an Exponential Equation Graphically In
Exercises 83–86, use the zero or root feature or the zoom
and trace features of a graphing utility to approximate
the solution of the exponential equation accurate to three
decimal places. 

83. 84.

85. 86.

Finding the Zero of a Function In Exercises 87–90, use a
graphing utility to graph the function and approximate
its zero accurate to three decimal places.

87. 88.

89. 90.

Solving a Logarithmic Equation In Exercises 91–112,
solve the logarithmic equation algebraically. Round the
result to three decimal places. Verify your answer using
a graphing utility.

91. 92.

93. 94.

95.

96.

97. 98.

99. 100.

101. 102.

103. 104.

105. 106.

107.

108.

109.

110.

111.

112.

The Change-of-Base Formula In Exercises 113 and 114,
use the method of Example 10 to prove the change-of-base
formula for the indicated base.

113. 114.

Algebraic-Graphical-Numerical In Exercises 115–118,
(a) complete the table to find an interval containing the
solution of the equation, (b) use a graphing utility to
graph both sides of the equation to estimate the solution,
and (c) solve the equation algebraically. Round your
results to three decimal places.

115.

116. 3 ln 5x � 10

ln 2x � 2.4

loga x �
log10 x
log10 a

loga x �
loge x
loge a

log10 4x � log10�12 � �x � � 2

log10 8x � log10�1 � �x � � 2

ln�x � 1� � ln�x � 2� � ln x

ln�x � 5� � ln�x � 1� � ln�x � 1�
log3 x � log3�x � 8� � 2

log4 x � log4�x � 1� �
1
2

ln�x2 � 1� � 8ln�x � 1�2 � 2

ln �x � 8 � 5ln �x � 2 � 1

log10 x
2 � 6log10�z � 3� � 2

4 log10�x � 6� � 117 log4�0.6x� � 12

3 � 2 ln x � 10�2 � 2 ln 3x � 17

log9�4 � x� � log9�2x � 1�
log5�3x � 2� � log5�6 � x�

ln 2x � 1.5ln 4x � 2.1

ln x � �4ln x � �3

h�t� � e 0.125t � 8g�t� � e0.09t � 3

f �x� � 3e3x�2 � 962g�x� � 6e1�x � 25

119
e6x � 14

� 7
3000

2 � e2x � 2

�4 �
2.471

40 �
9t

� 21�1 �
0.065
365 �

365t

� 4

20�100 � ex�2� � 500

e3x � 12

50
1 � 2e�0.001x � 1000

40
1 � 5e�0.01x � 200

525
1 � e�x � 275

400
1 � e�x � 350

e�x2
� ex2�2xex2�3x � ex�2

e2x � ex2�8ex � ex2�2

e2x � 5ex � 6 � 0e2x � 4ex � 5 � 0

250�1 � 0.01�x

0.01 � � 150,000

5000�1 � 0.005�x

0.005 � � 250,000

�16 �
0.878

26 �
3t

� 30�1 �
0.10

12 �
12t

� 2

6�8�2�x� � 15 � 26015�23�x� � 13 � 100

�14 � 3ex � 117 � 2ex � 5

1000e�4x � 75500e�x � 300

100e0.005x � 125,000250e0.02x � 10,000

4�3t � 0.105�t�2 � 0.20

65x � 300083x � 360

x 0.6 0.7 0.8 0.9 1.0

e3x

x 5 6 7 8 9

20�100 � ex�2�

x 2 3 4 5 6

ln 2x

x 4 5 6 7 8

3 ln 5x
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117.

118.

Approximating the Solution of an Equation In Exercises
119–124, use the zero or root feature of a graphing utility
to approximate the solution of the logarithmic equation.

119. 120.

121. 122.

123.

124.

Finding the Point of Intersection In Exercises 125–130,
use a graphing utility to approximate the point of 
intersection of the graphs. Round your result to three
decimal places.

125. 126.

127. 128.

129. 130.

Solving Exponential and Logarithmic Equations In
Exercises 131–138, solve the equation algebraically.
Round the result to three decimal places. Verify your
answer using a graphing utility.

131. 132.

133. 134.

135. 136.

137. 138.

Solving a Model for x In Exercises 139–142, the 
equation represents the given type of model, which you
will use in Section 3.5. Solve the equation for 

Model type Equation

139. Exponential growth

140. Exponential decay

141. Gaussian

142. Logarithmic

Doubling and Tripling an Investment In Exercises
143–146, find the time required for a $1000 investment to
(a) double at interest rate compounded continuously,
and (b) triple at interest rate compounded continuously.
Round your results to two decimal places.

143. 144.

145. 146.

147. Economics The demand for a handheld electronic
organizer is given by

where is the price in dollars. Find the demands for
prices of (a) and (b) 

148. (p. 210) The percent of
American males between the ages of 18 and
24 who are no more than inches tall is
modeled by

and the percent of American females
between the ages of 18 and 24 who are no
more than inches tall is modeled by

(Source: U.S. National Center for Health Statistics)

(a) Use a graphing utility to graph the two functions in
the same viewing window.

(b) Use the graphs in part (a) to determine the
horizontal asymptotes of the functions. Interpret
their meanings in the context of the problem.

(c) What is the average height for each sex?

149. Finance The numbers of commercial banks in the
United States from 1999 through 2009 can be modeled
by

where represents the year, with corresponding
to 1999. In what year were there about 7100 commercial
banks? (Source: Federal Deposit Insurance Corp.)

150. Forestry The yield (in millions of cubic feet 
per acre) for a forest at age years is given by

(a) Use a graphing utility to graph the function.

(b) Determine the horizontal asymptote of the function.
Interpret its meaning in the context of the problem.

(c) Find the time necessary to obtain a yield of 
1.3 million cubic feet.

V � 6.7e�48.1�t.
t

V

t � 9t

9 � t � 19y � 13,107 � 2077.6 ln t,

y

f �x� �
100

1 � e�0.66607�x�64.51�.

x

f

m�x� �
100

1 � e�0.6114�x�69.71�

x

m

p � $250.p � $300
xp

p � 5000�1 �
4

4 � e�0.002x�

x

r � 3.75%r � 2.5%

r � 6%r � 7.5%

r,
r,

y � a � b ln x

y � ae��x�b�2�c

y � ae�bx

y � aebx

x.

2x ln�1
x� � x � 0

1 � ln x
2

� 0

1 � ln x
x2 � 02x ln x � x � 0

e�2x � 2xe�2x � 0�xe�x � e�x � 0

�x2e�x � 2xe�x � 02x2e2x � 2xe2x � 0

y2 � ln �x � 2y2 �
1
2 ln�x � 2�

y1 � 1.05y1 � 3.25

y2 � 1500e�x�2y2 � 4e�0.2x

y1 � 500y1 � 80

y2 � 3x�1 � 2y2 � 2x�1 � 5

y1 � 4y1 � 7

ln x � ln�x2 � 4� � 10

ln�x � 3� � ln�x � 3� � 1

ln x � ln�x � 1� � 2ln x � ln�x � 2� � 1

log10 x
2 � 4log10 x � x3 � 3

5 log10�x � 2� � 11

6 log3�0.5x� � 11

x 12 13 14 15 16

6 log3�0.5x�

x 150 155 160 165 170

5 log10�x � 2�

Orange Line Media 2010/used under license from Shutterstock.com
GaryAlvis/iStockphoto.com
Allkindza/iStockphoto.com
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220 Chapter 3 Exponential and Logarithmic Functions

151. Science An object at a temperature of was
removed from a furnace and placed in a room at 
The temperature of the object was measured after
each hour and recorded in the table. A model for the
data is given by 

(a) Use a graphing utility to plot the data and graph
the model in the same viewing window.

(b) Identify the horizontal asymptote of the graph.
Interpret its meaning in the context of the problem.

(c) Approximate the time when the temperature of the
object is 

Conclusions
True or False? In Exercises 153 and 154, determine
whether the statement is true or false. Justify your answer.

153. An exponential equation must have at least one solution.

154. A logarithmic equation can have at most one extraneous
solution.

155. Error Analysis Describe the error.

157. Think About It Would you use a One-to-One Property
or an Inverse Property to solve Explain.

158. Exploration Let and where

(a) Let and use a graphing utility to graph the
two functions in the same viewing window. What
do you observe? Approximate any points of 
intersection of the two graphs.

(b) Determine the value(s) of for which the two
graphs have one point of intersection.

(c) Determine the value(s) of for which the two
graphs have two points of intersection.

159. Think About It Is the time required for a continuously
compounded investment to quadruple twice as long as
the time required for it to double? Give a reason for
your answer and verify your answer algebraically.

160. Writing Write a paragraph explaining whether or not
the time required for a continuously compounded 
investment to double is dependent on the size of the
investment.

Cumulative Mixed Review
Sketching Graphs In Exercises 161–166, sketch the
graph of the function.

161. 162.

163. 164.

165.

166. f�x� � �x � 9,
x2 � 1,     

x � �1
x > �1

f�x� � �2x,
�x2 � 4,

   x < 0
   x � 0

f�x� � �x � 2� � 8f�x� � �x� � 9

f�x� � ��x � 1�3 � 2f�x� � 3x3 � 4

a

a

a � 1.2

a > 1.
g�x� � ax,f �x� � loga x

5x � 34?

 x �
1
2 ln 10

 2x � ln 10

 ln�2ex� � ln 10

 2ex � 10

100�C.

T � 20 �1 � 7�2�h�	.
h

T
20�C.

160�C

Hour, h Temperature

0 160�
1 90�

2 56�
3 38�
4 29�

5 24�

152. MODELING DATA
The table shows the numbers of college-bound seniors
intending to major in computer or information sciences
who took the SAT exam from 2001 through 2009. The
data can be modeled by the logarithmic function

where represents the
year, with corresponding to 2001. (Source:
The College Board)

(a) According to the model, in what year would
25,325 seniors intending to major in computer or
information sciences take the SAT exam?

(b) Use a graphing utility to graph the model with the
data, and use the graph to verify your answer in
part (a).

(c) Do you think this is a good model for predicting
future values? Explain.

t � 1
tN � 77,010 � 21,554.3 ln t,

N

Year Number, N

2001 73,466
2002 68,051
2003 53,449
2004 45,879
2005 42,890
2006 37,943
2007 33,965
2008 30,495
2009 31,022

156. CAPSTONE Write two or three sentences stating the
general guidelines that you follow when you solve (a)
exponential equations and (b) logarithmic equations.

David Gallaher 2009/used under license from Shutterstock.com
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Section 3.5 Exponential and Logarithmic Models 221

3.5 Exponential and Logarithmic Models

What you should learn
● Recognize the five most common

types of models involving expo-

nential or logarithmic functions.

● Use exponential growth and

decay functions to model and

solve real-life problems.

● Use Gaussian functions to model

and solve real-life problems.

● Use logistic growth functions to

model and solve real-life problems.

● Use logarithmic functions to

model and solve real-life problems.

Why you should learn it
Exponential decay models are used

in carbon dating. For instance, in

Exercise 37 on page 230, you will 

use an exponential decay model 

to estimate the age of a piece of

ancient charcoal.

Introduction
There are many examples of exponential and logarithmic models in real life. In Section
3.1, you used the formula

Exponential model

to find the balance in an account when the interest was compounded continuously. In
Section 3.2, Example 10, you used the human memory model

Logarithmic model

The five most common types of mathematical models involving exponential 
functions or logarithmic functions are as follows.

1. Exponential growth model:

2. Exponential decay model:

3. Gaussian model:

4. Logistic growth model:

5. Logarithmic models:

The basic shapes of these graphs are shown in Figure 3.32.

Exponential Growth Model Exponential Decay Model Gaussian Model

Logistic Growth Model Natural Logarithmic Model Common Logarithmic Model
Figure 3.32

You can often gain quite a bit of insight into a situation modeled by an exponential
or logarithmic function by identifying and interpreting the function’s asymptotes.

1 2 
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y = 1 + log10 x

−1 1 

−1
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1 

y = 1 + ln x
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y 
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−1 1 

−1
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x 

y 

3
1 + e−5xy =

2 1 −1−2

1 

−1

2 
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4 
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y 

y = 4e−x2

−3 −2 −1 1 

1

−1

−2

2

3

4

x 

y 

y = e−x

x 
2 1 −1 3 

1 

−1

−2

2 

3 

4 

y 

y = ex

y � a � b log10 xy � a � b ln x,

y �
a

1 � be�rx

y � ae��x�b�2�c

b > 0y � ae�bx,

b > 0y � aebx,

f�t� � 75 � 6 ln�t � 1�.

A � Pert

Explore the Concept
Use a graphing utility
to graph each model
shown in Figure 3.32.

Use the table and trace features
of the graphing utility to identify
the asymptotes of the graph of
each function.

Archaeologist

Peter Elvidge 2010/used under license from Shutterstock.com
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222 Chapter 3 Exponential and Logarithmic Functions

Algebraic Solution
The following table compares the two sets of population figures.

From the table, it appears that the model is a good fit for the data. To find
when the world population will reach 7.1 billion, let 

in the model and solve for 

Write original equation.

Substitute 7100 for 

Divide each side by 6097.

Take natural log of each side.

Inverse Property

Divide each side by 0.0116.

According to the model, the world population will reach 7.1 billion in
2013.

Now try Exercise 33.

 t � 13.1

 0.0116t � 0.15230

 ln e0.0116t � ln 1.16451

 e0.0116t � 1.16451

P. 6097e0.0116t � 7100

 6097e0.0116t � P

t.

P � 7100

Graphical Solution

The intersection point
of the model and the
line y = 7100 is about
(13.1, 7100). So, 
according to the
model, the world
population will reach
7.1 billion in 2013.

P = 6097e0.0116t

9000

0
0 20

y = 7100

The model appears to
fit the data closely. 

P = 6097e0.0116t

9000

0
0 10

An exponential model increases (or decreases) by the same percent each year.
What is the annual percent increase for the model in Example 1?

Exponential Growth and Decay

Example 1 Demography

Estimates of the world population (in millions) from 2003 through 2009 are shown in
the table. A scatter plot of the data is shown in Figure 3.33. (Source: U.S. Census
Bureau)

An exponential growth model that approximates these data is given by

where is the population (in millions) and represents 2003. Compare the values
given by the model with the estimates shown in the table. According to this model,
when will the world population reach 7.1 billion?

t � 3P

3 � t � 9P � 6097e0.0116t,

Year (3 ↔ 2003)

Po
pu

la
tio

n 
(i

n 
m

ill
io

ns
) 

t
3 4 5 6 7 8 9

1000

2000

3000

4000

5000

6000

7000

8000

9000

P
World Population

Figure 3.33

Year Population, P

2003 6313
2004 6387
2005 6462
2006 6538
2007 6615
2008 6691
2009 6768

Year 2003 2004 2005 2006 2007 2008 2009

Population 6313 6387 6462 6538 6615 6691 6768

Model 6313 6387 6461 6536 6613 6690 6768
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Section 3.5 Exponential and Logarithmic Models 223

In Example 1, you were given the exponential growth model. Sometimes you must
find such a model. One technique for doing this is shown in Example 2.

Example 2 Modeling Population Growth

In a research experiment, a population of fruit flies is increasing according to the law
of exponential growth. After 2 days there are 100 flies, and after 4 days there are 
300 flies. How many flies will there be after 5 days?

Solution
Let be the number of flies at time (in days). From the given information, you know
that when and when . Substituting this information into
the model produces

and

To solve for solve for in the first equation.

Solve for in the first equation.

Then substitute the result into the second equation.

Write second equation.

Substitute for 

Simplify.

Divide each side by 100.

Take natural log of each side.

Inverse Property

Solve for 

Using and the equation you found for you can determine that

Substitute for 

Simplify.

Inverse Property

Simplify.

So, with and

the exponential growth model is

as shown in Figure 3.34. This implies that after 
5 days, the population will be

Now try Exercise 35.

y � 33.33e0.5493�5� � 520 flies.

y � 33.33e0.5493t,

b �
1
2 ln 3 � 0.5493

a � 33.33

 � 33.33.

 �
100
3

 �
100
e ln 3

b.1
2 ln 3 a �

100
e2��1�2� ln 3�

a,b �
1
2 ln 3

b. 
1
2

 ln 3 � b

 ln 3 � 2b

 ln 3 � ln e2b

 3 � e2b

 300 � 100e2b

a.
100
e 2b 300 � �100

e2b 	e4b

 300 � ae4b

aa �
100
e2b100 � ae2b

ab,

300 � ae4b.100 � ae2b

y � aebt
t � 4y � 300t � 2y � 100

ty

0 6
0

600

(2, 100) 

(4, 300) 

(5, 520) 

y = 33.33e0.5493t

Figure 3.34
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224 Chapter 3 Exponential and Logarithmic Functions

In living organic material, the ratio of 
the content of radioactive carbon isotopes 
(carbon 14) to the content of nonradioactive 
carbon isotopes (carbon 12) is about 1 to

When organic material dies, its 
carbon 12 content remains fixed, whereas 
its radioactive carbon 14 begins to decay 
with a half-life of 5700 years. To estimate 
the age of dead organic material, scientists 
use the following formula, which denotes
the ratio of carbon 14 to carbon 12 present 
at any time (in years).

Carbon dating model

The graph of is shown in Figure 3.35. Note that decreases as increases.tRR

R �
1

1012
e�t�8223

t

1012.

The carbon dating model in Example 3 assumed that the carbon 14 to carbon 12
ratio was one part in 10,000,000,000,000. Suppose an error in measurement occurred
and the actual ratio was only one part in 8,000,000,000,000. The fossil age corresponding
to the actual ratio would then be approximately 17,000 years. Try checking this result.

5000 15,000 

10−13 

10−12 

10−12 1 
2 ( ( R

at
io

 

Time (in years) 

t = 0 

t = 5700

t = 18,934

t 

R 

R =          e− t/82231
1012

Figure 3.35

Example 3 Carbon Dating

The ratio of carbon 14 to carbon 12 in a newly discovered fossil is

Estimate the age of the fossil.

R �
1

1013
.

Algebraic Solution
In the carbon dating model, substitute the given value of to
obtain the following.

Write original model.

Substitute for 

Multiply each side by 

Take natural log of each side.

Inverse Property

Multiply each side by 

So, to the nearest thousand years, you can estimate the age of
the fossil to be 19,000 years.

Now try Exercise 37.

�8223. t � 18,934

 �
t

8223
� �2.3026

 ln e�t�8223 � ln 
1

10

1012. e�t�8223 �
1

10

R.
1

1013 
e�t�8223

1012
�

1

1013

 
1

1012
e�t�8223 � R

R

Graphical Solution
Use a graphing utility to graph the formula for the ratio of
carbon 14 to carbon 12 at any time as 

In the same viewing window, graph as shown
in Figure 3.36.

Figure 3.36

So, to the nearest thousand years, you can estimate the age of
the fossil to be 19,000 years.

Use the intersect feature
to estimate that x ≈ 18,934
when y = 1/(1013).

10−12

−2(10)−13

25,0000

y1 =          e−x/82231
1012

y2 = 1
1013

y2 � 1��1013�,

y1 �
1

1012e�x�8223.

t
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Section 3.5 Exponential and Logarithmic Models 225

Gaussian Models
As mentioned at the beginning of this section, Gaussian models are of the form 

This type of model is commonly used in probability and statistics to represent 
populations that are normally distributed. For standard normal distributions, the
model takes the form 

The graph of a Gaussian model is called a bell-shaped curve. Try graphing the normal
distribution curve with a graphing utility. Can you see why it is called a bell-shaped
curve?

The average value for a population can be found from the bell-shaped curve 
by observing where the maximum -value of the function occurs. The -value 
corresponding to the maximum -value of the function represents the average value of
the independent variable—in this case,

Example 4 SAT Scores

In 2009, the Scholastic Aptitude Test (SAT) mathematics scores for college-bound
seniors roughly followed the normal distribution

where is the SAT score for mathematics. Use a graphing utility to graph this function
and estimate the average SAT score. (Source: College Board)

Solution
The graph of the function is shown in Figure 3.37. 
On this bell-shaped curve, the maximum value of 
the curve represents the average score. Using the 
maximum feature of the graphing utility, you can 
see that the average mathematics score for college-
bound seniors in 2009 was 515.

Now try Exercise 41.

In Example 4, note that 50% of the seniors who took the test received scores
lower than 515 (see Figure 3.38).

Figure 3.38
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Figure 3.37

Edyta Pawlowska/iStockphoto.com
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226 Chapter 3 Exponential and Logarithmic Functions

Logistic Growth Models
Some populations initially have rapid growth, followed by a declining rate of growth,
as indicated by the graph in Figure 3.39. One model for describing this type of growth
pattern is the logistic curve given by the function

where is the population size and is the time. An example is a bacteria culture that 
is initially allowed to grow under ideal conditions, and then under less favorable 
conditions that inhibit growth. A logistic growth curve is also called a sigmoidal curve.

xy

y �
a

1 � be�rx

Example 5 Spread of a Virus

On a college campus of 5000 students, one student returns from vacation with a 
contagious flu virus. The spread of the virus is modeled by

where is the total number of students infected after days. The college will cancel
classes when 40% or more of the students are infected. 

a. How many students are infected after 5 days?

b. After how many days will the college cancel classes?

ty

t � 0y �
5000

1 � 4999e�0.8t
,

Algebraic Solution
a. After 5 days, the number of students infected is

b. Classes are canceled when the number of infected 
students is 

So, after about 10 days, at least 40% of the students will
be infected, and classes will be canceled.

Now try Exercise 43.

 t � 10.14

 t � �
1

0.8
 ln 

1.5
4999

 �0.8t � ln 
1.5

4999

 ln e�0.8t � ln 
1.5

4999

 e�0.8t �
1.5

4999

 1 � 4999e�0.8t � 2.5

 2000 �
5000

1 � 4999e�0.8t

�0.40��5000� � 2000.

 � 54.

 �
5000

1 � 4999e�4

 y �
5000

1 � 4999e�0.8�5�

Graphical Solution
a.

b. Classes are canceled when the number of infected students
is Use a graphing utility to graph

and

in the same viewing window. Use the intersect feature of
the graphing utility to find the point of intersection of the
graphs, as shown in Figure 3.40.

Figure 3.40

The intersection point
occurs near x ≈ 10.14.
So, after about 10 days,
at least 40% of the
students will be
infected, and classes
will be canceled.

0 20

−1000

6000
y1 = 5000

1 + 4999e−0.8x

y2 = 2000

y2 � 2000y1 �
5000

1 � 4999e�0.8x

�0.40��5000� � 2000.

Use the value feature
to estimate that y ≈ 54
when x = 5. So, after 5
days, about 54 students
will be infected. 0 20

−1000

6000

y = 5000
1 + 4999e−0.8x

Decreasing 
rate of 
gro wt h 

Increasing 
rate of 
gro wt h 

x 

y 

Figure 3.39 Logistic Curve
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Section 3.5 Exponential and Logarithmic Models 227

Logarithmic Models
On the Richter scale, the magnitude of an earthquake of intensity is given by

where is the minimum intensity used for comparison. Intensity is a measure 
of the wave energy of an earthquake.

Example 6 Magnitudes of Earthquakes

In 2009, Crete, Greece experienced an earthquake that measured 6.4 on the Richter
scale. Also in 2009, the north coast of Indonesia experienced an earthquake that 
measured 7.6 on the Richter scale. Find the intensity of each earthquake and compare
the two intensities.

Solution
Because and you have

For you have 

Note that an increase of 1.2 units on the Richter scale (from 6.4 to 7.6) represents an
increase in intensity by a factor of

In other words, the intensity of the earthquake near the north coast of Indonesia was
about 16 times as great as the intensity of the earthquake in Greece.

Now try Exercise 45.

Example 7 pH Levels

Acidity, or pH level, is a measure of the hydrogen ion concentration (measured in
moles of hydrogen per liter) of a solution. Use the model given by to
determine the hydrogen ion concentration of milk of magnesia, which has a pH of 10.5.

Solution
Write original model.

Substitute 10.5 for pH.

Multiply each side by 

Exponentiate each side (base 10).

Simplify.

So, the hydrogen ion concentration of milk of magnesia is mole of hydrogen
per liter.

Now try Exercise 51.

3.16 � 10�11

 3.16 � 10�11 � �H��

 10�10.5 � 10log10�H��

�1. �10.5 � log10�H��

 10.5 � �log10�H��

 pH � �log10�H��

pH � �log10�H��
�H��

107.6

106.4 � 101.2 � 16.

107.6 � I. 107.6 � 10log10 I

 7.6 � log10 
I
1

R � 7.6,

106.4 � I. 106.4 � 10log10 I

 6.4 � log10 
I
1

R � 6.4,I0 � 1

I0 � 1

R � log10 
I

I0

IR

Earthquake Relief Worker

michael ledray 2010/used under license from Shutterstock.com
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228 Chapter 3 Exponential and Logarithmic Functions

Identifying Graphs of Models In Exercises 7–12, match
the function with its graph. [The graphs are labeled (a),
(b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f)

7. 8.

9. 10.

11. 12.

Using a Compound Interest Formula In Exercises
13–20, complete the table for a savings account in which
interest is compounded continuously.

Initial Annual Time to Amount After
Investment % Rate Double 10 Years

13. $10,000 3.5%

14. $2000 1.5%

15. $7500 21 years

16. $1000 12 years

17. $5000 $5665.74

18. $300 $385.21

19. 4.5% $100,000.00

20. 2% $2500.00

21. Tripling an Investment Complete the table for the
time (in years) necessary for dollars to triple when
interest is compounded continuously at rate Create a
scatter plot of the data.

r 2% 4% 6% 8% 10% 12%

t

r.
Pt

��
��
��
��

��
��
��
��

y �
4

1 � e�2xy � ln�x � 1�

y � 3e��x�2�2�5y � 6 � log10�x � 2�
y � 6e�x�4y � 2ex�4

4 

2 4−2

6 

2 

−2

x 

y 

−6−12 6 12 

6 

x 

y 

2 4 6 

2 

4 

6 

x 

y 

−4−8 84

8 

12 

4 

x 

y 

2 4 6  

2 

4 

−4

8 

x 

y 

2 4  6 

2

−2

4

6

x 

y 

Vocabulary and Concept Check
1. Match the equation with its model.

(a) Exponential growth model (i)

(b) Exponential decay model (ii)

(c) Logistic growth model (iii)

(d) Gaussian model (iv)

(e) Natural logarithmic model (v)

(f) Common logarithmic model (vi)

In Exercises 2 and 3, fill in the blank.

2. Gaussian models are commonly used in probability and statistics to represent 
populations that are _______ distributed.

3. Logistic growth curves are also called _______ curves.

4. Which model in Exercise 1 has a graph called a bell-shaped curve?
5. Does the model represent exponential growth or exponential decay?

6. Which model in Exercise 1 has a graph with two horizontal asymptotes?

Procedures and Problem Solving

y � 120e�0.25x

y � ae��x�b�2�c

y � a � b log10 x

y � aebx,  b > 0

y �
a

1 � be�rx

y � a � b ln x

y � ae�bx,  b > 0

3.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.
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22. Tripling an Investment Complete the table for the
time (in years) necessary for dollars to triple when
interest is compounded annually at rate Create a 
scatter plot of the data.

23. Finance When $1 is invested in an account over a 
10-year period, the amount in the account after years
is given by

or

depending on whether the account pays simple interest
at or continuous compound interest at 7%. Use a
graphing utility to graph each function in the same
viewing window. Which grows at a greater rate?
(Remember that is the greatest integer function
discussed in Section 1.3.)

24. Finance When $1 is invested in an account over a 
10-year period, the amount in the account after years
is given by

or

depending on whether the account pays simple interest
at 6% or compound interest at compounded daily.
Use a graphing utility to graph each function in the
same viewing window. Which grows at a greater rate?

Radioactive Decay In Exercises 25–28, complete the
table for the radioactive isotope.

Half-Life Initial Amount After

Isotope (years) Quantity 1000 Years

25. 1599 10 g

26. 1599 1.5 g

27. 5700 3 g

28. 24,100 0.4 g

Identifying a Model In Exercises 29–32, find the 
exponential model that fits the points shown in
the graph or table.

29. 30.

31. 32.

33. Demography The populations (in thousands) of
Pittsburgh, Pennsylvania from 2000 through 2008 can
be modeled by where is the year,
with corresponding to 2000. (Source: U.S.
Census Bureau)

(a) According to the model, was the population of
Pittsburgh increasing or decreasing from 2000
through 2008? Explain your reasoning.

(b) What were the populations of Pittsburgh in 2000,
2005, and 2008?

(c) According to the model, when will the population
of Pittsburgh be approximately 290,000?

35. Demography The populations (in thousands) of 
San Antonio, Texas from 2000 through 2008 can be 
modeled by

where is the year, with corresponding to 2000.
In 2002, the population was 1,200,000. (Source: U.S.
Census Bureau)

(a) Find the value of for the model. Round your result
to four decimal places.

(b) Use your model to predict the population in 2015.

k

t � 0t

P � 1155.4ekt

P

t � 0
tP � 333.68e�0.0099t,

P

−1

−4 8

7

(4, 5) 

0,  ( ( 1 
2 

−1

−9 9

11

(3, 10) 

(0, 1) 

y � aebx

�239Pu
�14C

�226Ra
�226Ra

51
2%

A � �1 �
0.055

365 	
�365t �

A � 1 � 0.06 � t �

tA

�t�

71
2%

A � e0.07tA � 1 � 0.075� t �

tA

r 2% 4% 6% 8% 10% 12%

t

r.
Pt

34. MODELING DATA
The table shows the populations (in millions) of five
countries in 2005 and the projected populations (in 
millions) for 2015. (Source: U.S. Census Bureau)

(a) Find the exponential growth or decay model,
or for the population of each

country, where is the year, with corresponding
to 2005. Use the model to predict the population of
each country in 2030.

(b) You can see that the populations of Canada and the
Philippines are growing at different rates. What 
constant in the equation is determined by
these different growth rates? Discuss the relationship
between the different growth rates and the 
magnitude of the constant.

(c) The population of Turkey is increasing while the
population of Hungary is decreasing. What 
constant in the equation reflects this 
difference? Explain.

y � aebt

y � aebt

t � 5t
y � ae�bt,y � aebt

Country 2005 2015

Australia 20.2 22.8
Canada 32.4 35.1
Hungary 10.0 9.7

Philippines 90.4 109.6
Turkey 72.7 82.5
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230 Chapter 3 Exponential and Logarithmic Functions

36. Demography The populations (in thousands) of
Raleigh, North Carolina from 2000 through 2008 can be
modeled by where is the year, with

corresponding to 2000. In 2006, the population
was 363,000. (Source: U.S. Census Bureau)

(a) Find the value of for the model. Round your result
to four decimal places.

(b) Use your model to predict the population in 2015.

37. (p. 221) Carbon 14 
dating assumes that the carbon dioxide on
Earth today has the same radioactive 
content as it did centuries ago. If this is true,
then the amount of absorbed by a tree
that grew several centuries ago should be
the same as the amount of absorbed by 
a tree growing today. A piece of ancient

charcoal contains only 15% as much radioactive carbon
as a piece of modern charcoal. How long ago was the
tree burned to make the ancient charcoal given that the
half-life of is 5700 years?

38. Radioactive Decay The half-life of radioactive radium
is 1599 years. What percent of a present amount

of radioactive radium will remain after 100 years?

41. Psychology The IQ scores for adults roughly follow
the normal distribution 

where is the IQ score.

(a) Use a graphing utility to graph the function.

(b) Use the graph in part (a) to estimate the average IQ
score.

42. Marketing The sales (in thousands of units) of a
cleaning solution after hundred dollars is spent on
advertising are given by When $500
is spent on advertising, 2500 units are sold.

(a) Complete the model by solving for 

(b) Estimate the number of units that will be sold when
advertising expenditures are raised to $700.

43. Forestry A conservation organization releases 100
animals of an endangered species into a game preserve.
The organization believes that the preserve has a carrying
capacity of 1000 animals and that the growth of the herd
will follow the logistic curve

where is measured in months.

(a) What is the population after 5 months?

(b) After how many months will the population reach 500?

(c) Use a graphing utility to graph the function. Use the
graph to determine the values of at which the
horizontal asymptotes occur. Identify the asymptote
that is most relevant in the context of the problem
and interpret its meaning.

44. Biology The number of yeast organisms in a culture
is given by the model

where represents the time (in hours).

(a) Use a graphing utility to graph the model.

(b) Use the model to predict the populations for the
19th hour and the 30th hour.

(c) According to this model, what is the limiting value
of the population?

(d) Why do you think this population of yeast follows
a logistic growth model instead of an exponential
growth model?

Geology In Exercises 45 and 46, use the Richter scale (see
page 227) for measuring the magnitudes of earthquakes.

45. Find the intensities of the following earthquakes
measuring on the Richter scale (let ).
(Source: U.S. Geological Survey)

(a) Haiti in 2010,

(b) Samoa Islands in 2009,

(c) Virgin Islands in 2008, R � 6.1

R � 8.1

R � 7.0

I0 � 1R
I

t

0 � t � 18Y �
663

1 � 72e�0.547t,

Y

p

t

p�t� �
1000

1 � 9e�0.1656t

k.

S � 10�1 � ekx �.
x
S

x70 � x � 115,
y � 0.0266e��x�100�2�450,

�226Ra�

14C

14C

14C

�14C�

k

t � 0
tP � 289.81ekt,

P

39. MODELING DATA
A new 2009 luxury sedan that sold for $49,200 has a
book value of $32,590 after 2 years.

(a) Find a linear model for the value of the sedan.

(b) Find an exponential model for the value of the
sedan. Round the numbers in the model to four 
decimal places.

(c) Use a graphing utility to graph the two models in
the same viewing window.

(d) Which model represents a greater depreciation rate
in the first year?

(e) For what years is the value of the sedan greater
using the linear model? the exponential model?

V

V

V

40. MODELING DATA
A new laptop computer that sold for $935 in 2009 has
a book value of $385 after 2 years.

(a) Find a linear model for the value of the laptop.

(b) Find an exponential model for the value of the
laptop. Round the numbers in the model to four 
decimal places.

(c) Use a graphing utility to graph the two models in
the same viewing window.

(d) Which model represents a greater depreciation
rate in the first year?

(e) For what years is the value of the laptop greater
using the linear model? the exponential model?

V

V

V

Peter Elvidge 2010/used under license from Shutterstock.com
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Section 3.5 Exponential and Logarithmic Models 231

46. Find the magnitudes of the following earthquakes of
intensity (let ).

(a)

(b)

(c)

Audiology In Exercises 47–50, use the following 
information for determining sound intensity. The level of
sound (in decibels) with an intensity is

where is an intensity of watt per square meter,
corresponding roughly to the faintest sound that can be
heard by the human ear. In Exercises 47 and 48, find the
level of each sound 

47. (a) watt per (quiet room)

(b) watt per (busy street corner)

(c) watt per (threshold of pain)

48. (a) watt per (door slamming)

(b) watt per (loud car horn)

(c) watt per (siren at 30 meters)

49. As a result of the installation of a muffler, the noise
level of an engine was reduced from 88 to 72 decibels.
Find the percent decrease in the intensity level of the
noise due to the installation of the muffler.

50. As a result of the installation of noise suppression 
materials, the noise level in an auditorium was reduced
from 93 to 80 decibels. Find the percent decrease in the
intensity level of the noise due to the installation of
these materials.

Chemistry In Exercises 51–54, use the acidity model
given in Example 7.

51. Find the pH when 

52. Compute for a solution for which 

53. A grape has a pH of 3.5, and baking soda has a pH of
8.0. The hydrogen ion concentration of the grape is how
many times that of the baking soda?

54. The pH of a solution is decreased by one unit. The
hydrogen ion concentration is increased by what factor?

55. Finance The total interest paid on a home mortgage
of dollars at interest rate for years is given by

Consider a $120,000 home mortgage at 

(a) Use a graphing utility to graph the total interest
function.

(b) Approximate the length of the mortgage when the
total interest paid is the same as the amount of the
mortgage. Is it possible that a person could pay
twice as much in interest charges as the amount of
his or her mortgage?

56. Finance A $120,000 home mortgage for 30 years at
has a monthly payment of $839.06. Part of the

monthly payment goes toward the interest charge on the
unpaid balance, and the remainder of the payment is
used to reduce the principal. The amount that goes
toward the interest is given by

and the amount that goes toward reduction of the 
principal is given by

In these formulas, is the size of the mortgage, is the
interest rate, is the monthly payment, and is the time
(in years).

(a) Use a graphing utility to graph each function in the
same viewing window. (The viewing window
should show all 30 years of mortgage payments.)

(b) In the early years of the mortgage, the larger part of
the monthly payment goes for what purpose?
Approximate the time when the monthly payment
is evenly divided between interest and principal
reduction.

(c) Repeat parts (a) and (b) for a repayment 
period of 20 years What can you
conclude?

57. Forensics At 8:30 A.M., a coroner was called to the
home of a person who had died during the night. In
order to estimate the time of death, the coroner took the
person’s temperature twice. At 9:00 A.M. the temperature
was and at 11:00 A.M. the temperature was

From these two temperatures the coroner was
able to determine that the time elapsed since death and
the body temperature were related by the formula

where is the time (in hours elapsed since the person
died) and is the temperature (in degrees Fahrenheit) of
the person’s body. Assume that the person had a normal
body temperature of at death and that the room
temperature was a constant Use the formula to
estimate the time of death of the person. (This formula
is derived from a general cooling principle called
Newton’s Law of Cooling.)

70	F.
98.6	F

T
t

t � �10 ln 
T � 70

98.6 � 70

82.8	F.
85.7	F,

�M � $966.71�.

tM
rP

v � �M �
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12	�1 �
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12	
12t

.
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12	�1 �
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2%
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2%.

u � P
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1 � r�12	
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trP
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pH � 5.8.�H��
�H�� � 2.3 � 10�5.

m2I � 10�2

m2I � 10�3

m2I � 10�4

m2I � 100

m2I � 10�5

m2I � 10�10

�.

10�12I0

� � 10 log10 
I
I0

I�

I � 251,200

I � 12,589,000

I � 39,811,000

I0 � 1I
R
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232 Chapter 3 Exponential and Logarithmic Functions

58. Culinary Arts You take a five-pound package of
steaks out of a freezer at 11 A.M. and place it in a 
refrigerator. Will the steaks be thawed in time to be
grilled at 6 P.M.? Assume that the refrigerator 
temperature is and the freezer temperature is 
Use the formula for Newton’s Law of Cooling

where is the time in hours (with corresponding
to 11 A.M.) and is the temperature of the package of
steaks (in degrees Fahrenheit).

Conclusions
True or False? In Exercises 59 and 60, determine
whether the statement is true or false. Justify your answer.

59. The domain of a logistic growth function cannot be the
set of real numbers.

60. The graph of a logistic growth function will always
have an -intercept.

61. Think About It Can the graph of a Gaussian model
ever have an -intercept? Explain.

Identifying Models In Exercises 63–66, identify the
type of model you studied in this section that has the
given characteristic.

63. The maximum value of the function occurs at the average
value of the independent variable.

64. A horizontal asymptote of its graph represents the limiting
value of a population.

65. Its graph shows a steadily increasing rate of growth.

66. The only asymptote of its graph is a vertical asymptote.

Cumulative Mixed Review
Identifying Graphs of Linear Equations In Exercises
67–70, match the equation with its graph, and identify any
intercepts. [The graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

67. 68.

69. 70.

Applying the Leading Coefficient Test In Exercises
71–74, use the Leading Coefficient Test to determine the
right-hand and left-hand behavior of the graph of the
polynomial function.

71.

72.

73.

74.

Using Synthetic Division In Exercises 75 and 76, divide
using synthetic division.

75.

76.

77. Make a Decision To work an extended application
analyzing the net sales for Kohl’s Corporation from 1992
through 2008, visit this textbook’s Companion Website.
(Data Source: Kohl’s Illinois, Inc.)
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62. C A P S T O N E For each graph, state whether an
exponential, Gaussian, logarithmic, logistic, or 
quadratic model will fit the data best. Explain your
reasoning. Then describe a real-life situation that
could be represented by the data.

(a) (b)

(c) (d)

(e) (f )
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3.6 Nonlinear Models

What you should learn
● Classify scatter plots.

● Use scatter plots and a graphing

utility to find models for data

and choose the model that best

fits a set of data.

● Use a graphing utility to find

exponential and logistic models

for data.

Why you should learn it
Many real-life applications can be

modeled by nonlinear equations. For

instance, in Exercise 34 on page 240,

you are asked to find a nonlinear

model that relates air pressure to

altitude.

Classifying Scatter Plots
In Section 1.7, you saw how to fit linear models to data, and in Section 2.8, you saw
how to fit quadratic models to data. In real life, many relationships between two 
variables are represented by different types of growth patterns. A scatter plot can be
used to give you an idea of which type of model will best fit a set of data.

Example 1 Classifying Scatter Plots

Decide whether each set of data could best be modeled by a linear model,
an exponential model, or a logarithmic model,

a.

b.

c.

Solution
a. From Figure 3.41, it appears that the data can best be modeled by an exponential

function.

Figure 3.41

b. From Figure 3.42, it appears that the data can best be modeled by a logarithmic 
function.

Figure 3.42

c. From Figure 3.43, it appears that the data can best be modeled by a linear function.

Figure 3.43

Now try Exercise 13.

0 10
0

12

0 10
0

12

0 10
0

12

�9.5, 9.9��9, 9.5�,�8.5, 8.9�,�8, 8.6�,�7.5, 7.9�,�7, 7.2�,�6.5, 6.8�,
�6, 6.4�,�5.5, 5.7�,�5, 5.2�,�4.5, 4.7�,�4, 4.3�,�3.5, 3.6�,�3, 3.2�,�2.5, 2.5�,�2, 1.9�,

�9.5, 8.2��9, 8�,�8.5, 7.9�,�8, 7.6�,�7.5, 7.2�,�7, 6.9�,�6.5, 6.4�,
�6, 6.2�,�5.5, 5.9�,�5, 5.6�,�4.5, 5.3�,�4, 4.6�,�3.5, 4.3�,�3, 3.8�,�2.5, 3.1�,�2, 2�,

�9.5, 10��9, 9�,�8.5, 7.8�,�8, 6.5�,�7.5, 5�,�7, 4.5�,�6.5, 3.8�,
�6, 3.1�,�5.5, 2.5�,�5, 2.4�,�4.5, 2�,�4, 1.8�,�3.5, 1.5�,�3, 1.3�,�2.5, 1.2�,�2, 1�,

y � a � b ln x.y � abx,
y � ax � b,
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234 Chapter 3 Exponential and Logarithmic Functions

Fitting Nonlinear Models to Data
Once you have used a scatter plot to determine the type of model that would best fit a
set of data, there are several ways that you can actually find the model. Each method is
best used with a computer or calculator, rather than with hand calculations.

Example 2 Fitting a Model to Data

Fit the following data from Example 1(a) to an exponential model and a power model.
Identify the coefficient of determination and determine which model fits the data better.

Solution
Begin by entering the data into a graphing utility. Then use the regression feature of 
the graphing utility to find exponential and power models for the data, as shown in
Figure 3.44.

Exponential Model Power Model
Figure 3.44

So, an exponential model for the data is and a power model for the
data is Plot the data and each model in the same viewing window, as
shown in Figure 3.45. To determine which model fits the data better, compare the 
coefficients of determination for each model. The model whose -value is closest to 
1 is the model that better fits the data. In this case, the better-fitting model is the 
exponential model.

Exponential Model Power Model
Figure 3.45

Now try Exercise 31.

Deciding which model best fits a set of data is a question that is studied in detail in
statistics. Recall from Section 1.7 that the model that best fits a set of data is the one
whose sum of squared differences is the least. In Example 2, the sums of squared 
differences are 0.90 for the exponential model and 14.30 for the power model.

0 10
0

12
y = 0.249x1.518

0 10
0

12
y = 0.507(1.368)x

r2

y � 0.249x1.518.
y � 0.507�1.368�x,

�9.5, 10��9, 9�,�8.5, 7.8�,�8, 6.5�,

�7.5, 5�,�7, 4.5�,�6.5, 3.8�,�6, 3.1�,

�5.5, 2.5�,�5, 2.4�,�4.5, 2�,�4, 1.8�,

�3.5, 1.5�,�3, 1.3�,�2.5, 1.2�,�2, 1�,
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Section 3.6 Nonlinear Models 235

Example 3 Fitting a Model to Data

The table shows the yield (in milligrams) of a chemical reaction after minutes. Use
a graphing utility to find a logarithmic model and a linear model for the data and 
identify the coefficient of determination for each model. Determine which model fits
the data better.

Solution
Begin by entering the data into a graphing utility. Then use the regression feature of 
the graphing utility to find logarithmic and linear models for the data, as shown in
Figure 3.46.

Logarithmic Model Linear Model
Figure 3.46

So, a logarithmic model for the data is and a linear model for
the data is Plot the data and each model in the same viewing window,
as shown in Figure 3.47. To determine which model fits the data better, compare 
the coefficients of determination for each model. The model whose coefficient 
of determination is closer to 1 is the model that better fits the data. In this case, the 
better-fitting model is the logarithmic model.

Logarithmic Model Linear Model
Figure 3.47

Now try Exercise 33.

In Example 3, the sum of the squared differences for the logarithmic model is 1.59
and the sum of the squared differences for the linear model is 24.31.

0 10
0

20

y = 2.29x + 2.3

0 10
0

20

y = 1.538 + 8.373 ln x

y � 2.29x � 2.3.
y � 1.538 � 8.373 ln x

xy

Minutes, x Yield, y

1 1.5
2 7.4
3 10.2
4 13.4
5 15.8
6 16.3
7 18.2
8 18.3

Explore the Concept
Use a graphing utility
to find a quadratic
model for the data 

in Example 3. Do you think 
this model fits the data better
than the logarithmic model 
in Example 3? Explain your
reasoning.
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236 Chapter 3 Exponential and Logarithmic Functions

Modeling With Exponential and Logistic Functions

Example 4 Fitting an Exponential Model to Data

The table at the right shows the amounts of revenue (in billions of dollars)
collected by the Internal Revenue Service (IRS) for selected years from 1963
through 2008. Use a graphing utility to find a model for the data. Then use the model
to estimate the revenue collected in 2013. (Source: IRS Data Book)

Solution
Let represent the year, with corresponding to 1963. Begin by entering the data
into a graphing utility and displaying the scatter plot, as shown in Figure 3.48.

Figure 3.48 Figure 3.49

From the scatter plot, it appears that an exponential model is a good fit. Use the 
regression feature of the graphing utility to find the exponential model, as shown in
Figure 3.49. Change the model to a natural exponential model, as follows.

Write original model.

Simplify.

Graph the data and the natural exponential model

in the same viewing window, as shown in Figure 3.50. From the model, you can see that
the revenue collected by the IRS from 1963 through 2008 had an average annual
increase of about 7%. From this model, you can estimate the 2013 revenue to be

Write natural exponential model.

Substitute 53 for 

billion Use a calculator.

which is more than twice the amount collected in 2003. You can also use the value
feature of the graphing utility to approximate the revenue in 2013 to be $4624.7 billion,
as shown in Figure 3.50.

Figure 3.50

Now try Exercise 35.

0 55

−500

5000

 � $4624.7

x. � 96.56e0.073�53�

 R � 96.56e0.073x

R � 96.56e0.073x

 � 96.56e0.073x

b � eln b �  96.56e�ln 1.076�x

 R � 96.56�1.076�x

0 50
0

3000

x � 3x

R

Study Tip
You can change an
exponential model of
the form

to one of the form

by rewriting in the form

For instance,

can be written as

y � 3�2x� � 3e�ln 2�x � 3e0.693x.

y � 3�2x�

b � eln b.

b

y � aecx

y � abx

Year Revenue, R

1963 105.9
1968 153.6
1973 237.8
1978 399.8
1983 627.2
1988 935.1
1993 1176.7
1998 1769.4
2003 1952.9
2008 2745.0
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Section 3.6 Nonlinear Models 237

The next example demonstrates how to use a graphing utility to fit a logistic model
to data.

Example 5 Fitting a Logistic Model to Data

To estimate the amount of defoliation caused by the gypsy moth during a given year, a
forester counts the number of egg masses on of an acre (circle of radius 18.6 feet)
in the fall. The percent of defoliation the next spring is shown in the table. (Source:
USDA, Forest Service)

a. Use the regression feature of a graphing utility to find a logistic model for the data.

b. How closely does the model represent the data?

y

1
40x

Graphical Solution
a. Enter the data into a graphing utility. Using the regression

feature of the graphing utility, you can find the logistic
model, as shown in Figure 3.51.

Figure 3.51

You can approximate this model to be

b. You can use the graphing utility to graph the actual data
and the model in the same viewing window. In Figure 3.52,
it appears that the model is a good fit for the actual data.

Figure 3.52

Now try Exercise 37.

0 120
0

120

y = 100
1 + 7e−0.069x

y �
100

1 � 7e�0.069x.

Numerical Solution
a. Enter the data into a graphing utility. Using the regression

feature of the graphing utility, you can approximate the
logistic model to be

b. You can see how well the model fits the data by 
comparing the actual values of with the values of 
given by the model, which are labeled * in the table
below.

In the table, you can see that the model appears to be a
good fit for the actual data.

y
yy

y �
100

1 � 7e�0.069x.

x 0 25 50 75 100

y 12 44 81 96 99

y* 12.5 44.5 81.8 96.2 99.3

Egg masses, x Percent of defoliation, y

0 12
25 44
50 81
75 96
100 99

Forester

Keith A Frith 2010/used under license from Shutterstock.com
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238 Chapter 3 Exponential and Logarithmic Functions

Classifying Scatter Plots In Exercises 5–12, determine
whether the scatter plot could best be modeled by a 
linear model, a quadratic model, an exponential model,
a logarithmic model, or a logistic model.

5. 6.

7. 8.

9. 10.

11. 12.

Classifying Scatter Plots In Exercises 13–18, use a
graphing utility to create a scatter plot of the data. Decide
whether the data could best be modeled by a linear
model, an exponential model, or a logarithmic model.

13.

14.

15.

16.

17.

18.

Finding an Exponential Model In Exercises 19–22, use
the regression feature of a graphing utility to find an 
exponential model for the data and identify the
coefficient of determination. Use the graphing utility to plot
the data and graph the model in the same viewing window.

19.

20.

21.

22.

Finding a Logarithmic Model In Exercises 23–26, use
the regression feature of a graphing utility to find a 
logarithmic model for the data and identify
the coefficient of determination. Use the graphing utility
to plot the data and graph the model in the same viewing
window.

23.

24.

25.

26.

Finding a Power Model In Exercises 27–30, use the
regression feature of a graphing utility to find a power
model for the data and identify the coefficient of
determination. Use the graphing utility to plot the data
and graph the model in the same viewing window.

27.

28.

29.

30. �10, 312��8, 332�,�6, 345�,�4, 385�,�2, 450�,
�4, 0.1��3, 0.7�,�2, 4.0�,�1, 10.0�,

�10, 150.0�
�8, 98.5�,�6, 65.7�,�4, 33.2�,�2, 12.5�,�0.5, 1.0�,

�10, 12.0��6, 7.3�,�5, 6.7�,�2, 3.4�,�1, 2.0�,

y � axb

�15, 6.5��12, 7.6�,�9, 9.0�,�6, 11.0�,�3, 14.6�,
�6, 2��5, 3�,�4, 5�,�3, 6�,�2, 6�,�1, 10�,

�10, 14.6�
�8, 14.2�,�6, 13.6�,�4, 12.8�,�2, 11.4�,�1, 8.5�,

�7, 4.5�
�6, 4.2�,�5, 4.1�,�4, 4.0�,�3, 3.5�,�2, 3.0�,�1, 2.0�,

y � a � b ln x

�10, 55.0��6, 58.2�,�3, 64.8�,�0, 80.5�,��3, 120.2�,
�4, 3.6��3, 3.8�,�2, 4.2�,�1, 6.1�,�0, 10.0�,

�10, 118.5�
�8, 59.1�,�6, 32.3�,�4, 18.0�,�2, 6.9�,�0, 4.0�,

�4, 13��3, 9�,�2, 7�,�1, 6�,�0, 5�,

y � abx

�8, 9.0��6, 8.6�,�4, 7.8�,�2, 6.4�,�1.5, 6.0�,�1, 5.0�,
�8, 2.0��6, 3.5�,�4, 5.0�,�2, 6.8�,�1.5, 7.0�,�1, 7.5�,
�8, 1.4��6, 2.5�,�4, 4.5�,�2, 8.2�,�1.5, 9.6�,�1, 11.0�,
�8, 33.0��6, 18.1�,�4, 9.9�,�2, 5.5�,�1.5, 4.7�,�1, 4.4�,

�8, 10.0��6, 8.9�,�4, 7.6�,�2, 6.5�,�1.5, 6.0�,�1, 5.8�,
�8, 7.8��6, 7.0�,�4, 5.8�,�2, 4.0�,�1.5, 3.5�,�1, 2.0�,

Vocabulary and Concept Check
In Exercises 1 and 2, fill in the blank.

1. A power model has the form _______ .

2. An exponential model of the form can be rewritten as a natural exponen-
tial model of the form _______.

3. What type of visual display can you create to get an idea of which type of model
will best fit the data set?

4. A power model for a set of data has a coefficient of determination of 
and an exponential model for the data has a coefficient of determination of

Which model fits the data better?

Procedures and Problem Solving

r2 � 0.967.

r2 � 0.901

y � abx

3.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.
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Section 3.6 Nonlinear Models 239

The table shows the yearly sales (in millions of 
dollars) of Whole Foods Market for the years 2001
through 2008. (Source: Whole Foods Market)

(a) Use the regression feature of a graphing utility to
find an exponential model and a power model for
the data and identify the coefficient of determination
for each model. Let represent the year, with 
corresponding to 2001.

(b) Use the graphing utility to graph each model with
the data.

(c) Use the coefficients of determination to determine
which model best fits the data.

t � 1t

S

Year Sales, S

2001 2272.2
2002 2690.5
2003 3148.6
2004 3865.0
2005 4701.3
2006 5607.4
2007 6591.8
2008 7953.9

32. MODELING DATA
The table shows the annual amounts (in billions of
dollars) spent in the U.S. by the cruise lines and passengers
of the North American cruise industry from 2003
through 2008. (Source: Cruise Lines International
Association)

(a) Use the regression feature of a graphing utility to
find a linear model, an exponential model, and a 
logarithmic model for the data. Let represent the
year, with corresponding to 2003.

(b) Use the graphing utility to graph each model with
the data. Use the graphs to determine which model
best fits the data.

(c) Use the model you chose in part (b) to predict the
amount spent in 2009. Is the amount reasonable?

t � 3
t

A

Year Amount, A

2003 12.92
2004 14.70
2005 16.18
2006 17.64
2007 18.70
2008 19.07

31. MODELING DATA

The populations (in millions) of the United States for
the years 1995 through 2008 are shown in the table,
where represents the year, with corresponding
to 1995. (Source: U.S. Census Bureau)

(a) Use the regression feature of a graphing utility to
find a linear model for the data and to identify the
coefficient of determination. Plot the model and
the data in the same viewing window.

(b) Use the regression feature of the graphing utility to
find a power model for the data and to identify the
coefficient of determination. Plot the model and
the data in the same viewing window.

(c) Use the regression feature of the graphing utility to
find an exponential model for the data and to identify
the coefficient of determination. Plot the model
and the data in the same viewing window.

(d) Use the regression feature of the graphing utility to
find a logarithmic model for the data and to identify
the coefficient of determination. Plot the model
and the data in the same viewing window.

(e) Which model is the best fit for the data? Explain.

(f) Use each model to predict the populations of the
United States for the years 2009 through 2014.

(g) Which model is the best choice for predicting the
future population of the United States? Explain.

(h) Were your choices of models the same for parts 
(e) and (g)? If not, explain why your choices were
different.

t � 5t

P

Year Population, P

1995 266.6
1996 269.7
1997 272.9
1998 276.1
1999 279.3
2000 282.4
2001 285.3
2002 288.0
2003 290.7
2004 293.3
2005 296.0
2006 298.8
2007 301.7
2008 304.5

33. MODELING DATA
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240 Chapter 3 Exponential and Logarithmic Functions

34. (p. 233) The atmospheric
pressure decreases with increasing altitude.
At sea level, the average air pressure is
approximately 1.03323 kilograms per
square centimeter, and this pressure is
called one atmosphere. Variations in weather
conditions cause changes in the atmospheric
pressure of up to percent. The ordered
pairs give the pressures (in atmos-
pheres) for various altitudes (in kilometers).

(a) Use the regression feature of a graphing utility 
to attempt to find the logarithmic model

for the data. Explain why the result
is an error message.

(b) Use the regression feature of the graphing utility to
find the logarithmic model for the
data.

(c) Use the graphing utility to plot the data and graph
the logarithmic model in the same viewing window.

(d) Use the model to estimate the altitude at which the
pressure is 0.75 atmosphere.

(e) Use the graph in part (c) to estimate the pressure at
an altitude of 13 kilometers.

h � a � b ln p

p � a � b ln h

�25, 0.02��15, 0.12�,
�5, 0.55�,�20, 0.06�,�10, 0.25�,�0, 1�,

h
p�h, p�

±5

The table shows the numbers of office supply stores
operated by Staples from 2001 through 2008.
(Source: Staples, Inc.)

(a) Use the regression feature of a graphing utility to
find an exponential model for the data. Let repre-
sent the year, with corresponding to 2001.

(b) Rewrite the model as a natural exponential model.

(c) Use the natural exponential model to predict the
number of Staples stores in 2009. Is the number 
reasonable?

t � 1
t

N

Year Number, N

2001 1436
2002 1488
2003 1559
2004 1680
2005 1780
2006 1884
2007 2038
2008 2218

A beaker of liquid at an initial temperature of is
placed in a room at a constant temperature of 
The temperature of the liquid is measured every 
5 minutes for a period of hour. The results are recorded
in the table, where is the time (in minutes) and is
the temperature (in degrees Celsius).

(a) Use the regression feature 
of a graphing utility to find 
a linear model for the data. 
Use the graphing utility to 
plot the data and graph the 
model in the same viewing 
window. Do the data 
appear linear? Explain.

(b) Use the regression feature of 
the graphing utility to find a 
quadratic model for the data. 
Use the graphing utility to 
plot the data and graph the
model in the same viewing 
window. Do the data appear 
quadratic? Even though the 
quadratic model appears to be 
a good fit, explain why it might 
not be a good model for predicting 
the temperature of the liquid when 

(c) The graph of the temperature of the room should
be an asymptote of the graph of the model.
Subtract the room temperature from each of the
temperatures in the table. Use the regression feature
of the graphing utility to find an exponential model
for the revised data. Add the room temperature to
this model. Use the graphing utility to plot the 
original data and graph the model in the same
viewing window.

(d) Explain why the procedure in part (c) was
necessary for finding the exponential model.

t � 60.

Tt

1
2

21�C.
78�C

Time, t Temperature, T

0 78.0�

5 66.0�
10 57.5�
15 51.2�
20 46.3�
25 42.5�
30 39.6�

35. MODELING DATA

36. MODELING DATA

lovleah/iStockphoto.com
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Section 3.6 Nonlinear Models 241

Conclusions
True or False? In Exercises 39 and 40, determine whether
the statement is true or false. Justify your answer.

39. The exponential model represents a growth
model when 

40. To change an exponential model of the form to
one of the form rewrite as 

41. Writing In your own words, explain how to fit a
model to a set of data using a graphing utility.

Cumulative Mixed Review
Using the Slope-Intercept Form In Exercises 43–46,
find the slope and -intercept of the equation of the line.
Then sketch the line by hand.

43.

44.

45.

46.

Writing the Equation of a Parabola in Standard Form In
Exercises 47–50, write an equation of the parabola in
standard form.

47. 48.

49. 50.

(0, 0)

(2, −2)

−2

−3

7

3

(3, 2)

(4, 0)
−2

−2

7

4

(0, 3)

(2, −1)
−2

−2

7

4

(0, 1)
(−1, 2)

−6

−3

3

3

0.4x � 2.5y � 12.0

1.2x � 3.5y � 10.5

3x � 2y � 9

2x � 5y � 10

y

b � ln eb.by � aecx,
y � abx

b > 0.
y � aebx

The table shows the percents of women in different
age groups (in years) who have been married at least
once. (Source: U.S. Census Bureau)

(a) Use the regression feature of a graphing utility to
find a logistic model for the data. Let represent
the midpoint of the age group.

(b) Use the graphing utility to graph the model with
the original data. How closely does the model 
represent the data?

x

P

Age group Percent, P

20–24 21.1

25–29 54.5

30–34 73.9

35–39 84.0

40–44 86.5

45–54 89.7

55–64 93.1

65–74 95.8

38. MODELING DATA
The table shows the annual sales (in millions of 
dollars) of AutoZone for the years from 2002 through
2009. (Source: AutoZone, Inc.)

(a) Use the regression feature of a graphing utility to
find a logarithmic model, an exponential model,
and a power model for the data. Let represent the
year, with corresponding to 2002.

(b) Use each of the following methods to choose the
model that best fits the data. Compare your results.

(i) Create a table of values for each model.

(ii) Use the graphing utility to graph each model
with the data.

(iii) Find and compare the coefficients of determi-
nation for the models.

t � 2
t

S

Year Sales, S

2002 5325.5
2003 5457.1
2004 5637.0
2005 5710.9
2006 5948.4
2007 6169.8
2008 6522.7
2009 6816.8

37. MODELING DATA

42. C A P S T O N E You use a graphing utility to create
the scatter plot of a set of data.

(a) What types of models are likely to fit the data
well? Explain.

(b) Discuss the methods you can use to find the model
of best fit for the data. Which method would you
prefer? Explain.
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242 Chapter 3 Exponential and Logarithmic Functions

3 Chapter Summary

What did you learn? Explanation and Examples Review 
Exercises

3.1

Recognize and evaluate exponential
functions with base (p. 180).a

The exponential function with base is denoted by
where and is any real number.xa � 1,a > 0,f �x� � ax,

af
1–4

Graph exponential functions with
base (p. 181).a

x

y

(0, 1)

f (x) = a−x

x

(0, 1)

y

f (x) = ax 5–12

Recognize, evaluate, and graph
exponential functions with base e
(p. 184).

The function 
is called the natural 
exponential function.

1−1−2

2

3

(0, 1)

(1, e) 

x

y

f (x) = ex

−2, 1
e2(         (         

−1, 1
e(         (         

f �x� � ex

13–18

Use exponential functions to 
model and solve real-life problems
(p. 186).

Exponential functions are used in compound interest 
formulas (see Example 8) and in radioactive decay models
(see Example 10).

19–22

3.2

Recognize and evaluate logarithmic
functions with base (p. 192).a

For and if and only if
The function is called the logarithmic

function with base a.
f �x� � loga xx � ay.

y � loga xa � 1,a > 0,x > 0,
23–36

Graph logarithmic functions with
base (p. 194), and recognize,
evaluate, and graph natural 
logarithmic functions (p. 196).

a
The graphs of The function defined by
and are reflections is called 
of each other in the line the natural logarithmic

function.

f (x) = ex

(         (         

y

32−1−2

3

2

−1

−2

(e, 1)

(1, 0)

(1, e)

(0, 1)

, −11
e

−1, 1
e(         (         

x

g(x) = f −1(x) = ln x

y = x
(0, 1)

(1, 0)
x

y

−1 1 2

−1

1

2

f −1(x) = g(x) = loga x

f (x) = ax

y = x

y � x.

x > 0,g�x� � ln x,f �x� � ax

g�x� � loga x

37–48

Use logarithmic functions to model
and solve real-life problems (p. 198).

A logarithmic function is used in the human memory model.
(See Example 10.) 49, 50

3.3

Rewrite logarithms with different
bases (p. 203).

Let and be positive real numbers such that and
Then can be converted to a different base as

follows.
Base Base 10 Base

loga x �
ln x
ln a

loga x �
log10 x
log10 a

loga x �
logb x
logb a

eb

loga xb � 1.
a � 1xb,a,

51–58
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Chapter Summary 243

What did you learn? Explanation and Examples Review 
Exercises

3.3

Use properties of logarithms to
evaluate, rewrite, expand, or 
condense logarithmic expressions
(p. 204).

Let be a positive number be a real number, and
and be positive real numbers.

1. Product Property:

2. Quotient Property:

3. Power Property: ln un � n ln uloga u
n � n loga u,

ln�u�v� � ln u � ln v
loga�u�v� � loga u � loga v

ln�uv� � ln u � ln v
loga�uv� � loga u � loga v

vu
n�a � 1�,a

59–78

Use logarithmic functions to
model and solve real-life problems
(p. 206).

Logarithmic functions can be used to find an equation that
relates the periods of several planets and their distances
from the sun. (See Example 7.)

79, 80

3.4

Solve simple exponential and 
logarithmic equations (p. 210).

Solve simple exponential or logarithmic equations using the
One-to-One Properties and Inverse Properties of exponential
and logarithmic functions.

81–94

Solve more complicated exponential
(p. 211) and logarithmic (p. 213)
equations.

To solve more complicated equations, rewrite the equations
so that the One-to-One Properties and Inverse Properties of
exponential and logarithmic functions can be used. (See
Examples 2–8.)

95–118

Use exponential and logarithmic
equations to model and solve 
real-life problems (p. 216).

Exponential and logarithmic equations can be used to find
how long it will take to double an investment (see Example 12)
and to find the year in which  the average salary for public
school teachers reached $45,000 (see Example 13).

119, 120

3.5

Recognize the five most common
types of models involving 
exponential or logarithmic 
functions (p. 221).

1. Exponential growth model:
2. Exponential decay model:
3. Gaussian model:

4. Logistic growth model:

5. Logarithmic models:
y � a � b log10 x
y � a � b ln x

y �
a

1 � be�rx

y � ae��x�b�2�c

b > 0y � ae�bx,
b > 0y � aebx,

121–126

Use exponential growth and 
decay functions to model and
solve real-life problems (p. 222).

An exponential growth function can be used to model the
world population (see Example 1) and an exponential decay
function can be used to estimate the age of a fossil (see
Example 3).

127

Use Gaussian functions (p. 225),
logistic growth functions (p. 226),
and logarithmic functions (p. 227)
to model and solve real-life 
problems.

A Gaussian function can be used to model SAT math scores
for college-bound seniors (see Example 4).

A logistic growth function can be used to model the spread
of a flu virus (see Example 5).

A logarithmic function can be used to find the intensity of an
earthquake using its magnitude (see Example 6).

128–130

3.6

Classify scatter plots (p. 233), and
use scatter plots and a graphing
utility to find models for data and
choose the model that best fits a
set of data (p. 234).

You can use a scatter plot and a graphing utility to choose a
model that best fits a set of data that represents the yield of
a chemical reaction. (See Example 3.) 131, 132

Use a graphing utility to find
exponential and logistic models
for data (p. 236).

An exponential model can be used to estimate the amount of
revenue collected by the Internal Revenue Service for a given
year (see Example 4) and a logistic model can be used to
estimate the percent of defoliation caused by the gypsy
moth (see Example 5).

133, 134
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244 Chapter 3 Exponential and Logarithmic Functions

3 Review Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.

Evaluating Exponential Functions In Exercises 1–4, use
a calculator to evaluate the function at the indicated
value of Round your result to four decimal places.

1. 2.

3. 4.

Library of Parent Functions In Exercises 5–8,
match the function with its graph. [The graphs are
labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

5. 6.

7. 8.

Graphs of and In Exercises 9–12, graph
the exponential function by hand. Identify any 
asymptotes and intercepts and determine whether the
graph of the function is increasing or decreasing.

9. 10.

11. 12.

Graphing an Exponential Function In Exercises 13–18,
use a graphing utility to construct a table of values for
the function. Then sketch the graph of the function.
Identify any asymptotes of the graph.

13. 14.

15. 16.

17. 18.

Finding the Balance for Compound Interest In Exercises
19 and 20, complete the table to determine the balance 
for $10,000 invested at rate for years, compounded 
continuously.

19. 20.

21. Economics A new SUV costs $32,000. The value of
the SUV after years is modeled by 

(a) Use a graphing utility to graph the function.

(b) Find the value of the SUV after 2 years.

(c) According to the model, when does the SUV
depreciate most rapidly? Is this realistic? Explain.

22. Radioactive Decay Let represent the mass, in
grams, of a quantity of plutonium 241 whose
half-life is 14 years. The quantity of plutonium present
after years is given by 

(a) Determine the initial quantity 

(b) Determine the quantity present after 10 years.

(c) Use a graphing utility to graph the function over the
interval to 

Rewriting Equations In Exercises 23–32, write the 
logarithmic equation in exponential form or write the
exponential equation in logarithmic form.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

Evaluating Logarithms In Exercises 33–36, use the 
definition of logarithmic function to evaluate the function
at the indicated value of without using a calculator.

Function Value

33.

34.

35.

36.

Sketching the Graph of a Logarithmic Function In
Exercises 37–40, find the domain, vertical asymptote,
and -intercept of the logarithmic function, and sketch
its graph by hand.

37. 38.

39. 40.

Evaluating the Natural Logarithmic Function In
Exercises 41– 44, use a calculator to evaluate the function

at the indicated value of Round your result
to three decimal places, if necessary.

41. 42.

43. 44. x �
5
6x � �6

x � 0.46x � 21.5

x.f�x� � ln x

f�x� � log5�x � 2� � 3f�x� � log2�x � 1� � 6

g�x� � log5�x � 3�g�x� � �log2 x � 5

x

x � 0.00001f �x� � log10 x

x �
1
4f �x� � log4 x

x � 1f �x� � log7 x

x � 216f �x� � log6 x

x

�2
3��2

�
9
4�1

2��3
� 8

12�1 �
1
121252�3 � 25

35 � 24343 � 64

log10� 1
100� � �2log64 2 �

1
6

log9 81 � 2log5 125 � 3

3.2

t � 50.t � 0

�when t � 0�.
Q � 50�1

2�t�14
.t

�241Pu�,
Q

V�t� � 32,000�3
4�t

.t
V

r � 3%r � 8%

tr
A

f �x� � 2 � ex�3f �x� � 4e�0.5x

f�x� � 3 � e�xh�x� � �ex

f �x� � ex�2h�x� � ex�1

g�x� � 0.3�xg�x� � 6�x

f�x� � 0.3xf�x� � 6x

y � a�xy � ax

f�x� � 4x � 1f�x� � �4x

f�x� � 4�xf�x� � 4x

−1

−4 5

5

−1

−5 4

5

−5

−5 4

1

−1

−5 4

5

x �
3
2g�x� � 25�3x,x � �1.1g�x� � 602x,

x � ��11f �x� � 7x,x � 2�f �x� � 1.45x,

x.

3.1

t 1 10 20 30 40 50

A
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Review Exercises 245

Analyzing Graphs of Functions In Exercises 45–48, use
a graphing utility to graph the logarithmic function.
Determine the domain and identify any vertical asymptote
and -intercept.

45. 46.

47. 48.

49. Aeronautics The time (in minutes) for a small plane
to climb to an altitude of feet is given by

where 18,000 feet is the plane’s absolute ceiling.

(a) Determine the domain of the function appropriate
for the context of the problem.

(b) Use a graphing utility to graph the function and
identify any asymptotes.

(c) As the plane approaches its absolute ceiling, what
can be said about the time required to further
increase its altitude?

(d) Find the amount of time it will take for the plane to
climb to an altitude of 4000 feet.

50. Real Estate The model 

approximates the length of a home mortgage of
$150,000 at 8% in terms of the monthly payment. In the
model, is the length of the mortgage in years and is
the monthly payment in dollars.

(a) Use the model to approximate the length of a
$150,000 mortgage at 8% when the monthly 
payment is $1254.68.

(b) Approximate the total amount paid over the term of
the mortgage with a monthly payment of $1254.68.
What amount of the total is interest costs?

Changing the Base In Exercises 51–54, evaluate the
logarithm using the change-of-base formula. Do each
problem twice, once with common logarithms and once
with natural logarithms. Round your results to three
decimal places.

51. 52.

53. 54.

Graphing a Logarithm with Any Base In Exercises
55–58, use the change-of-base formula and a graphing
utility to graph the function.

55.

56.

57.

58.

Using Properties to Evaluate Logarithms In Exercises
59–62, approximate the logarithm using the properties
of logarithms, given the values 

and 

59. 60.

61. 62.

Simplifying a Logarithm In Exercises 63–66, use the
properties of logarithms to rewrite and simplify the 
logarithmic expression.

63.

64.

65.

66.

Expanding Logarithmic Expressions In Exercises 67–72,
use the properties of logarithms to expand the expression
as a sum, difference, and/or constant multiple of 
logarithms. (Assume all variables are positive.)

67. 68.

69. 70.

71. 72.

Condensing Logarithmic Expressions In Exercises
73–78, condense the expression to the logarithm of a 
single quantity.

73.

74.

75.

76.

77.

78.

79. Public Service The number of miles of roads cleared
of snow in 1 hour is approximated by the model

where is the depth of the snow (in inches).

(a) Use a graphing utility to graph the function.

(b) Complete the table.

(c) Using the graph of the function and the table, what
conclusion can you make about the number of miles
of roads cleared as the depth of the snow increases?

h 4 6 8 10 12 14

s

h

2 � h � 15s � 25 �
13 ln�h�12�

ln 3
,

s

3�ln x � 2 ln�x2 � 1�	 � 2 ln 5

ln 3 �
1
3 ln�4 � x2� � ln x

5 ln� x � 2� � ln� x � 2� � 3 ln x

1
2 ln�2x � 1� � 2 ln� x � 1�
log6 y � 2 log6 z

log2 9 � log2 x

ln 
xy5

�z
ln 

x � 3
xy

ln 
�x

4
log10 

5�y

x2

log4 16xy2log5 5x2

log10 0.002

log10 200

ln �e5

ln�5e�2�

logb 50logb �5

logb 
4
9logb 9

logb 5 y 0.8271.logb 3 y 0.5646,
logb 2 y 0.3562,

f �x� � log1�3�x � 1� � 1

f �x� � �log1�2�x � 2�
f �x� � 2 � log3 x

f �x� � log2�x � 1�

log3 0.28log14 364

log1�2 9log4 9

3.3

xt

x > 1000t � 12.542 ln�x��x � 1000�	,

t � 50 log10�18,000��18,000 � h�]

h
t

f �x� �
1
4 ln xh�x� �

1
2 ln x

f �x� � ln�x � 3�f �x� � ln x � 3

x
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246 Chapter 3 Exponential and Logarithmic Functions

80. Psychology Students in a sociology class were given
an exam and then retested monthly with an equivalent
exam. The average scores for the class are given by the
human memory model 
where is the time in months and When
will the average score decrease to 68?

Solving an Exponential or Logarithmic Equation In
Exercises 81–94, solve the equation for without using a
calculator.

81. 82.

83. 84.

85. 86.

87. 88.

89. 90.

91. 92.

93. 94.

Solving an Exponential Equation In Exercises 95–104,
solve the exponential equation algebraically. Round your
result to three decimal places.

95. 96.

97. 98.

99. 100.

101. 102.

103. 104.

Solving a Logarithmic Equation In Exercises 105–114,
solve the logarithmic equation algebraically. Round your
result to three decimal places.

105. 106.

107. 108.

109. 110.

111.

112.

113.

114.

Solving an Exponential or Logarithmic Equation In
Exercises 115–118, solve the equation algebraically.
Round your result to three decimal places.

115. 116.

117. 118.

119. Finance You deposit $7550 in an account that pays
6.9% interest, compounded continuously. How long
will it take for the money to double?

120. Economics The demand for a 32-inch plasma 
television is modeled by

Find the demands for prices of (a) and 
(b) 

Identifying Graphs of Models In Exercises 121–126,
match the function with its graph. [The graphs are
labeled (a), (b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f)

121. 122.

123. 124.

125. 126.

127. Demography The populations (in thousands) of
North Carolina from 1990 through 2008 can be 
modeled by where is the year, with

corresponding to 1990. In 2008, the population
was about 9,222,000. Find the value of and use the
result to predict the population in the year 2020.
(Source: U.S. Census Bureau)

128. Education The scores for a biology test follow a normal
distribution modeled by 
where is the test score and 

(a) Use a graphing utility to graph the function.

(b) Use the graph to estimate the average test score.

40 � x � 100.x
y � 0.0499e��x�74�2�128,

k
t � 0

tP � 6707.7ekt,

P

y �
6

1 � 2e�2xy � 2e��x�4�2�3

y � 7 � log10�x � 3�y � ln�x � 3�
y � 4e2x�3y � 3e�2x�3

−1 3

2 

3 

1 2

−2

−3

−3
x 

y 

−1 3

2
1

6

3

1 2 4
−2

5
x 

y 

−2−4 2

8 

4 

6 

2 

6

10 

4
x 

y 

−2 2

8

4

6

2

4 6
−2

x 

y 

−8 −2−4 2

8 

4 

−6

6 

x 

y 

−8 −2−4 2

2

6

4

−6

8

−2

x 

y 

3.5

p � $400.
p � $450x

p � 5000
1 �
4

4 � e�0.0005x�.

x

1 � ln x
x2 � 0x ln x � x � 0

2xe2x � e2x � 0xex � ex � 0

log10��x � 4� � 2

log10�1 � x� � �1

log5�x � 2� � log5 x � log5�x � 5�
log4�x � 1� � log4�x � 2� � log4�x � 2�

ln �x � 40 � 3ln �x � 1 � 2

ln x � ln 3 � 4ln x � ln 5 � 2

ln 5x � 4.5ln 3x � 6.4

e2x � 6ex � 8 � 0e2x � 7ex � 10 � 0

�ex�2 � 1 �
1
22ex�3 � 1 � 4

2�12x� � 190�4�5x� � �68

6 x � 28 � �82x � 13 � 35

14e3x�2 � 5603e�5x � 132

ln�2x � 1� � �4ln�x � 1� � 2

ln x � �3ln x � 4

log5�2x � 1� � 2log2�x � 1� � 3

logx 729 � 6log8 x � 4

4x�2 � 642x�1 �
1
16

6x�2 � 12966x �
1

216

7x � 34310x � 10,000

x

3.4

0 � t � 10.t
17 log10�t � 1�,f �t� � 85 �
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Review Exercises 247

129. Education The average number of words per
minute that the students in a first grade class could
read orally after weeks of school is modeled by

Find the numbers of weeks it took the class to read at
average rates of (a) 40 words per minute and (b) 60
words per minute.

130. Geology On the Richter scale, the magnitude of an
earthquake of intensity is modeled by

where is the minimum intensity used for
comparison. Find the intensities of the following
earthquakes measuring on the Richter scale.

(a) (b) (c)

Classifying Scatter Plots In Exercises 131 and 132,
determine whether the scatter plot could best be modeled
by a linear model, an exponential model, a logarithmic
model, or a logistic model.

131. 132.
Conclusions
True or False? In Exercises 135–138, determine whether
the equation or statement is true or false. Justify your
answer.

135. 136.

137. The domain of the function is the set of all
real numbers.

138. The logarithm of the quotient of two numbers is equal
to the difference of the logarithms of the numbers.

139. Think About It Without using a calculator, explain
why you know that is greater than 2, but less than 4.

140. Exploration
(a) Use a graphing utility to compare the graph of the

function with the graph of each function
below. (read as “ factorial”) is defined as

(b) Identify the pattern of successive polynomials
given in part (a). Extend the pattern one more term
and compare the graph of the resulting polynomial
function with the graph of What do you
think this pattern implies?

y � ex.

y3 � 1 �
x

1!
�

x2

2!
�

x3

3!

y2 � 1 �
x

1!
�

x2

2!
,y1 � 1 �

x

1!
,

n! � 1 � 2 � 3 . . . �n � 1� � n.	
n�n!

y � ex

2�2

f�x� � ln x

ln�x � y� � ln�xy�ex�1 �
ex

e

0
0 10

8

0
0 10

5

3.6

R � 5.5R � 8.4R � 7.1

R
I

I0 � 1

R � log10 
I
I0

I
R

N �
62

1 � 5.4e�0.24t
 .

t

N

133. MODELING DATA

Each ordered pair represents the year and the
number (in thousands) of female participants in high
school athletic programs during nine school years,
with corresponding to the 2000–2001 school
year. (Source: National Federation of State High
School Associations)

(a) Use the regression feature of a graphing utility 
to find a linear model, an exponential model, and 
a power model for the data and identify the 
coefficient of determination for each model.

(b) Use the graphing utility to graph each model with
the original data.

(c) Determine which model best fits the data. Explain.

(d) Use the model you chose in part (c) to predict the
number of participants during the 2009–2010
school year.

(e) Use the model you chose in part (c) to predict the
school year in which about 3,720,000 girls will 
participate.

�9, 3114��8, 3057�,�7, 3022�,�6, 2953�,
�5, 2908�,�4, 2865�,�3, 2856�,�2, 2807�,�1, 2784�,

t � 1

N
t�t, N�

134. MODELING DATA
You plant a tree when it is 1 meter tall and check its
height (in meters) every 10 years, as shown in the
table.

(a) Use the regression feature of a graphing utility to
find a logistic model for the data. Let represent
the year.

(b) Use the graphing utility to graph the model with
the original data.

(c) How closely does the model represent the data?

(d) What is the limiting height of the tree?

x

h

Year Height, h

0 1
10 3
20 7.5
30 14.5
40 19
50 20.5
60 21
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248 Chapter 3 Exponential and Logarithmic Functions

3 Chapter Test See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.

Take this test as you would take a test in class. After you are finished, check your
work against the answers given in the back of the book.

In Exercises 1–3, use a graphing utility to construct a table of values for the func-
tion. Then sketch a graph of the function. Identify any asymptotes and intercepts.

1. 2. 3.

In Exercises 4–6, evaluate the expression.

4. 5. 6.

In Exercises 7–9, find the domain, vertical asymptote, and -intercept of the 
logarithmic function, and sketch its graph by hand.

7. 8. 9.

In Exercises 10–12, evaluate the logarithm using the change-of-base formula.
Round your result to three decimal places.

10. 11. 12.

In Exercises 13–15, use the properties of logarithms to expand the expression as a
sum, difference, and/or multiple of logarithms.

13. 14. 15.

In Exercises 16–18, condense the expression to the logarithm of a single quantity.

16. 17.

18.

In Exercises 19–22, solve the equation for 

19. 20.

21. 22.

In Exercises 23–26, solve the equation algebraically. Round your result to three
decimal places.

23. 24.

25. 26.

27. The half-life of radioactive actinium is 22 years. What percent of a present
amount of radioactive actinium will remain after 19 years?

28. The table shows the annual revenues (in millions of dollars) for Daktronics from
2001 through 2008. (Source: Daktronics, Inc.)

(a) Use the regression feature of a graphing utility to find a logarithmic model, an
exponential model, and a power model for the data. Let represent the year,
with corresponding to 2001.

(b) Use the graphing utility to graph each model with the original data.

(c) Determine which model best fits the data. Use the model to predict the revenue
of Daktronics in 2015.

t � 1
t

R

�227Ac�

2x ln x � x � 0log10 x � log10�8 � 5x� � 2

�xe�x � e�x � 0
1025

8 � e4x � 5

log10�x � 4� � 5log7 x � 3

52x � 25003x � 81

x.

ln x � ln�x � 2� � ln�2x � 3�
4 ln x � 4 ln ylog3 13 � log3 y

ln 
x�x � 1

2e4ln 
5�x

6
log2 3a4

log12 64log2�5 0.9log7 44

f �x� � 1 � ln�x � 6�f �x� � ln�x � 4�f �x� � �log10 x � 6

x

5 � log10 10004.6 ln e2log7 7
�0.89

f �x� � 1 � e2xf �x� � �6x�2f �x� � 10�x

Year Revenue, R

2001 148.8
2002 177.8
2003 209.9
2004 230.3
2005 309.4
2006 433.2
2007 499.7
2008 581.9
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Cumulative Test for Chapters 1–3 249

1–3 Cumulative Test See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.

Take this test to review the material in Chapters 1–3. After you are finished, check
your work against the answers given in the back of the book.

In Exercises 1–3, (a) write the slope-intercept form of the equation of the line that
satisfies the given conditions and (b) find three additional points through which
the line passes.

1. The line contains the points and 

2. The line contains the point and has a slope of 

3. The line has an undefined slope and contains the point 

In Exercises 4 and 5, evaluate the function at each value of the independent 
variable and simplify.

4. 5.

(a) (b) (c) (a) (b) (c)

6. Does the graph at the right represent as a function of Explain.

7. Use a graphing utility to graph the function Then
determine the open intervals over which the function is increasing, decreasing, or
constant.

8. Compare the graph of each function with the graph of 

(a) (b) (c)

In Exercises 9–12, evaluate the indicated function for

and

9. 10.

11. 12.

13. Determine whether has an inverse function. If so, find it.

In Exercises 14–16, sketch the graph of the function. Use a graphing utility to 
verify the graph.

14.

15.

16.

17. Find all the zeros of 

18. Use a graphing utility to approximate any real zeros of 
accurate to three decimal places.

19. Divide by using long division.

20. Divide by using synthetic division.

21. Multiply the complex number by its complex conjugate.

22. Find a polynomial function with real coefficients that has the zeros and
1 � �5 i.

0, �3,

�5 � 4i

�x � 6��2x3 � 5x2 � 6x � 20�
�x � 3��4x2 � 14x � 9�

g�x� � x3 � 4x2 � 11

f �x� � x3 � 2x2 � 4x � 8.

f�x� � x3 � 2x2 � 9x � 18

f �x� � x2 � 6x � 5

f �x� � ��x � 2�2 � 5

h�x� � 5x � 2

� fg���1��g 	 f ���2�
�g � f ��3

4�� f � g���4�

g�x� � 4x � 1.f�x� � �x2 � 3x � 10

g�x� � ��x � 3h�x� � �x � 3r�x� �
1

4
�x

f�x� � �x.

f�x� � 2�x � 5� � �x � 5�.
x?y

f �4�f �0�f��8�f�5 � 4s�f�2�f�5�

f�x� � 3x � 8,
x2 � 4,

   x < 0
   x 
 0

f�x� �
x

x � 2

��3
7, 18�.

�2.��1
2, 1�

��1, 4�.��5, 8�

−6

−1

6

7

Figure for 6
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250 Chapter 3 Exponential and Logarithmic Functions

In Exercises 23–25, sketch the graph of the rational function. Identify any
asymptotes. Use a graphing utility to verify your graph.

23. 24. 25.

In Exercises 26–29, use a calculator to evaluate the expression. Round your answer
to three decimal places.

26. 27. 28. 29.

In Exercises 30–33, sketch the graph of the function by hand. Use a graphing utility
to verify your graph.

30. 31.

32. 33.

In Exercises 34–36, evaluate the logarithm using the change-of-base formula.
Round your result to three decimal places.

34. 35. 36.

37. Use the properties of logarithms to expand 

38. Write as a logarithm of a single quantity.

In Exercises 39– 44, solve the equation algebraically. Round your result to three
decimal places and verify your result graphically.

39.

40.

41.

42.

43.

44.

45. A rectangular plot of land with a perimeter of 546 feet has a width of 

(a) Write the area of the plot as a function of 

(b) Use a graphing utility to graph the area function. What is the domain of the
function?

(c) Approximate the dimensions of the plot when the area is 15,000 square feet.

46. The table shows the average prices (in dollars) received by commercial trout 
producers per pound of trout in the United States from 2001 to 2008. (Source:
U.S. Department of Agriculture)

(a) Use the regression feature of a graphing utility to find a quadratic model,
an exponential model, and a power model for the data and identify the 
coefficient of determination for each model. Let represent the year, with 

corresponding to 2001.

(b) Use the graphing utility to graph each model with the original data.

(c) Determine which model best fits the data. Explain.

(d) Use the model you chose in part (c) to predict the average price of one 
pound of trout in 2010. Is your answer reasonable? Explain.

t � 1
t

y

x.A

x.

ln�2x � 5� � ln x � 1

2x2e2x � 2xe2x � 0

250e0.05x � 500,000

log2 x � log2 5 � 6

4x�5 � 21 � 30

6e2x � 72

2 ln x � ln�x � 1� � ln�x � 1�

ln 
x2 � 4
x2 � 1

.

log2�3
2�log9 6.8log5 16

f �x� � ln�4 � x�f �x� � 4 � log10�x � 3�
f �x� � ��1

2��x
� 3f �x� � �3x�4 � 5

4e2.56e�8�558�5�1.85�3.1

f �x� �
x2 � 3x � 8

x � 2
f �x� �

5x
x2 � x � 6

f �x� �
2x

x � 3

Year Average price, y
(in dollars)

2001 1.13
2002 1.08
2003 1.04
2004 1.03
2005 1.05
2006 1.11
2007 1.19
2008 1.38
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Proofs in Mathematics 251

Proofs in Mathematics

Each of the following three properties of logarithms can be proved by using properties
of exponential functions.

Proof
Let

and

The corresponding exponential forms of these two equations are

and

To prove the Product Property, multiply and to obtain

The corresponding logarithmic form of is 

So,

To prove the Quotient Property, divide by to obtain

The corresponding logarithmic form of is

So,

To prove the Power Property, substitute for in the expression as follows.

Substitute for 

Property of exponents

Inverse Property of logarithms

Substitute for 

So, loga u
n � n loga u.

x.loga u � n loga u

 � nx

 � loga a
nx

u.ax loga u
n � loga�ax�n

loga u
n,uax

loga 
u
v

� loga u � loga v.

loga 
u
v

� x � y.

u�v � ax�y

u
v

�
ax

ay � ax�y.

vu

loga v.loga�uv� � loga u �

loga�uv� � x � y.

uv � ax�y

uv � axay � ax�y.

vu

ay � v.ax � u

y � loga v.x � loga u

Properties of Logarithms (p. 204)

Let be a positive real number such that and let be a real number. If 
and are positive real numbers, then the following properties are true.

Logarithm with Base Natural Logarithm

1. Product Property:

2. Quotient Property:

3. Power Property: ln un � n ln uloga u
n � n loga u

ln  
u

v
� ln u � ln vloga 

u

v
� loga u � loga v

ln�uv� � ln u � ln vloga�uv� � loga u � loga v

a

v
una � 1,a

Slide Rules

The slide rule was invented by
William Oughtred (1574–1660)
in 1625. The slide rule is a
computational device with a
sliding portion and a fixed
portion. A slide rule enables you
to perform multiplication by
using the Product Property of
logarithms. There are other slide
rules that allow for the calculation
of roots and trigonometric 
functions. Slide rules were used
by mathematicians and engi-
neers until the invention of the
handheld calculator in 1972.
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252 Chapter 3 Exponential and Logarithmic Functions

Progressive Summary (Chapters 1–3)
This chart outlines the topics that have been covered so far in this text. Progressive 
Summary charts appear after Chapters 2, 3, 6, and 9. In each Progressive Summary, new
topics encountered for the first time appear in red.

Polynomial, Rational, Radical

� Rewriting
Polynomial form ↔ Factored form
Operations with polynomials
Rationalize denominators
Simplify rational expressions
Operations with complex numbers

� Solving
Equation Strategy

Linear . . . . . . . . . . . . Isolate variable
Quadratic  . . . . . . . . . Factor, set to zero

Extract square roots
Complete the square
Quadratic Formula

Polynomial . . . . . . . . Factor, set to zero
Rational Zero Test

Rational . . . . . . . . . . Multiply by LCD
Radical  . . . . . . . . . . . Isolate, raise to power
Absolute value  . . . . . Isolate, form two

equations

� Analyzing
Graphically Algebraically

Intercepts Domain, Range
Symmetry Transformations
Slope Composition
Asymptotes Standard forms
End behavior of equations
Minimum values Leading Coefficient
Maximum values Test

Synthetic division
Descartes’s Rule of

Signs
Numerically

Table of values

Exponential, Logarithmic

� Rewriting

Exponential form ↔ Logarithmic form
Condense/expand logarithmic

expressions

� Solving
Equation Strategy

Exponential  . . . . . . . Take logarithm of
each side

Logarithmic  . . . . . . . Exponentiate
each side

� Analyzing
Graphically Algebraically

Intercepts Domain, Range
Asymptotes Transformations

Composition
Inverse Properties

Numerically

Table of values

� Rewriting

� Solving

� Analyzing

ALGEBRAIC FUNCTIONS TRANSCENDENTAL FUNCTIONS OTHER TOPICS
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