

The Equilibrium Rule: $\Sigma F = 0$

600 _N 600 N 1. Manuel weighs 1000 N and stands in the middle of a board that weighs 200 N. The ends of the board rest on bathroom scales. (We can assume the weight of the board acts at its center.) Fill in the correct weight reading on each scale. 200 N 850 N N COOL 🕴 350 2. When Manuel moves to the left as shown, the scale closest to him reads 850 N. Fill in the weight for the far scale. 200 N 19 TONS 13 TONSA 1000 N 3. A 12-ton truck is one-quarter the way across a bridge that weighs 20 tons. A 13-ton force supports the right side of 12 TONS the bridge as shown. How much support force is on the left side? **20 TONS** Normal = 1000 N 4. A 1000-N crate resting on a surface is **500** Tension = .. N crate connected to a 500-N block through a frictionless pulley as shown. Friction UN Tension = between the crate and surface is enough friction = 500 N <u>500</u> N w = 1000_N to keep the system at rest. The arrows show the forces that act on the crate and Iron the block. Fill in the magnitude of each block force. = <mark>500</mark> N 5. If the crate and block in the preceding question move at constant speed, the tension in the rope (is the same) (increases) (decreases). The sliding system is then in (static equilibrium) (dynamic equilibrium).

CONCEPTUAL PHYSICS

Fill in the magnitudes of net force for each case.

Concept-Development Practice Page

Mass and Weight

Pull of

gravity

Support Force

CONCEPTUAL PHYSICS

Learning physics is learning the connections among concepts in nature, and also learning to distinguish between closely related concepts. Velocity and acceleration, which are treated in the next chapter, are often confused. Similarly in this chapter, we find that mass and weight are often confused. They aren't the same! Please review the distinction between mass and weight in your textbook. To reinforce your understanding of this distinction, circle the correct answers below.

Comparing the concepts of mass and weight, one is basic-fundamental-

depending only on the internal makeup of an object and the number and kind of atoms that compose it. The concept that is fundamental is (mass) (weight).

The concept that additionally depends on location in a gravitational field is (mass) (weight).

(Mass) (Weight) is a measure of the amount of matter in an object and only depends on the number and kind of atoms that compose it.

It can correctly be said that (mass) (weight) is a measure of "laziness" of an object.

(Mass) (Weight) is related to the gravitational force acting on the object.

(Mass) (Weight) depends on an object's location, whereas (mass) (weight) does not.

In other words, a stone would have the same (mass) (weight) whether it is on the surface of Earth or on the surface of the moon. However, its (mass) (weight) depends on its location.

On the moon's surface, where gravity is only about one sixth of Earth gravity (mass) (weight) (both the mass and the weight) of the stone would be the same as on Earth.

While mass and weight are not the same, they are (directly proportional) (inversely proportional) to each other. In the same location, twice the mass has (twice) (half) the weight.

The International System of Units (SI) unit of mass is the (kilogram) (newton), and the SI unit of force is the (kilogram) (newton).

In the United States, it is common to measure the mass of something by measuring its gravitational pull to Earth, its weight. The common unit of weight in the U.S. is the (pound) (kilogram) (newton).

When I step on a weighing scale, two forces act on it: a downward pull of gravity, and an upward support force. These equal and opposite forces effectively compress a spring inside the scale that is calibrated to show weight. When in equilibrium, my weight = mg.

Converting Mass to Weight

Objects with mass also have weight (although they can be weightless under special conditions). If you know the mass of something in **kilograms** and want its weight in **newtons**, at Earth's surface, you can take advantage of the formula that relates weight and mass.

Weight = mass × acceleration due to gravity W = mg

This is in accord with Newton's second law, written as F = ma. When the force of gravity is the only force, the acceleration of any object of mass m will be g, the acceleration of free fall. Importantly, g acts as a proportionality constant, 10 N/kg, which is equivalent to 10 m/s².

CONCEPTUAL PHYSICS

Concept-Development Practice Page 3

Inertia

Circle the correct answers.

1. An astronaut in outer space away from gravitational or frictional forces throws a rock. The rock will

(gradually slow to a stop)

(continue moving in a straight line at constant speed).

The rock's tendency to do this is called

(inertia) (weight) (acceleration).

The sketch shows a top view of a rock being whirled at the end of a string (clockwise). If the string breaks, the path of the rock is

3. Suppose you are standing in the aisle of a bus that travels along a straight road at 100 km/h, and you hold a pencil still above your head. Then relative to the bus, the velocity of the pencil is 0 km/h, and relative to the road, the pencil has a horizontal velocity of

(less than 100 km/h) (100 km/h) (more than 100 km/h).

Suppose you release the pencil. While it is dropping, and relative to the road, the pencil still has a horizontal velocity of

(less than 100 km/h) (100 km/h) (more than 100 km/h).

This means that the pencil will strike the floor at a place directly

(behind you) (at your feet below your hand) (in front of you).

Relative to you, the way the pencil drops

(is the same as if the bus were at rest)

(depends on the velocity of the bus).

How does this example illustrate the law of inertia?

A body in motion tends to remain in motion as long as no net force is exerted on the body in the direction of motion. Since there is no horizontal force on the pencil, its horizontal motion

doesn't change.

CONCEPTUAL PHYSICS

Chapter 1 About Science

Exercises

1.1 The Basic Science—Physics (page 1)

- **2.** Write *L* or *P* beside each of the following to classify it as a branch of life science or physical science.

L	zoology	P	astronomy
Ρ	physics	L	botany
Р	chemistry	Р	geology
			00)

- L biology
- **3.** Complete the following table by identifying each type of science described.

Type of Science	Description
Physics	The study of the nature of things such as motion, forces, energy, matter, heat, sound, light, and the composition of atoms
Chemistry	The study of how matter is put together, how atoms combine to form molecules, and how the molecules combine to make up matter
Biology	The study of matter that is alive

1.2 Mathematics—The Language of Science (page 1)

- 4. When the ideas of science are expressed in mathematical terms, they are <u>unambiguous</u>.
- 5. Explain why equations are often used in science. Equations provide compact expressions of relationships between concepts.

1.3 Scientific Methods (page 2)

- 7. Which two scientists are usually credited as the principal founders of the scientific method? <u>Galileo Galilei</u> and <u>Francis Bacon</u>
- 8. Name five steps that are generally included in scientific methods.
 - a. Recognize a problem.
 - b. Make an educated guess—a hypothesis—about the answer.
 - c. Predict the consequences of the hypothesis.
 - d. Perform experiments to test predictions.
 - e. Formulate the simplest general rule that organizes the main ingredients: hypothesis, prediction, and experimental outcome.

Chapter 1 About Science

9. Is the following statement true or false? Following the steps of the scientific method exactly is an important part of the success of science. false

1.4 The Scientific Attitude (pages 2-3)

Match each term to its definition.

Term

Definition

b 10. law or principle

12. hypothesis

a 11. fact

С

- a. a close agreement by competent observers who make a series of observations of the same phenomenon
- b. a hypothesis that has been tested over and over again and not contradicted
- c. an educated guess that is not fully accepted until demonstrated by experiment
- **13.** What should happen if a scientist finds evidence that contradicts a hypothesis, law, or principle?

The hypothesis, law, or principle must be changed or abandoned.

- 14. Which is more reliable, an idea of a scientist who has an excellent reputation or a single verifiable experiment that shows the idea is wrong?a single verifiable experiment that shows the idea is wrong
- **15.** In everyday speech, the word *theory* means <u>a supposition that has not been verified</u>
- **16.** In science, the word *theory* means ^a synthesis of a large body of information that encompasses well-tested and verified hypotheses about certain aspects of the natural world
- **17.** Is the following statement true or false? Once an idea becomes a theory, it cannot be changed. ______false_____

1.5 Scientific Hypotheses (page 4)

- **18.** What must be true in order for a hypothesis to be scientific? The hypothesis must be testable.
- **19.** To determine whether a hypothesis is scientific or not, you should look to see if there is a test for proving it wrong
- **20.** Scientists perform a(n) _______ to test a(n) ______ scientific hypothesis
- **21.** Is the following hypothesis scientific? Why? "Intelligent life exists on other planets somewhere in the universe." No; there is no test for proving it wrong.

Chapter 1 About Science

1.6 Science, Technology, and Society (page 5)

- **22.** Science is a method of answering <u>theoretical questions</u>; technology is a method of solving <u>practical problems</u>.
- **23.** Write *S* or *T* to indicate whether the following statements describe science or technology.

<u>T</u> Involves the design and creation of something for the use and enjoyment of humans

<u>S</u> Has to do with discovering facts and relationships between observable phenomena in nature

1.7 Science, Art, and Religion (page 6)

Match each term to its definition.

	Term	Definition
c b	24. science 25. art	 a. concerned with the source, purpose, and meaning of everything
a	26. religion	b. concerned with the value of human interactions as they pertain to the senses
		c. concerned with discovering and recording natural phenomena
27. Th	e domain of scien	ce is <u>natural order</u> ; the domain of religion is

27. The domain of science is <u>natural order</u>; the domain of religion <u>nature's purpose</u>.

1.8 In Perspective (page 7)

- 28. Is the following statement true or false? Progress was much slower thousands of years ago than it is today. <u>true</u>
- **29.** Thousands of years ago, the building of great structures such as the Pyramids was inspired by <u>a vision of the cosmos</u>.
- **30.** Is the inspiration for progress today similar to or different from the inspiration thousands of years ago? ______

Chapter 2 Mechanical Equilibrium

2.2 Mechanical Equilibrium (page 16)

14. Express the equilibrium rule in words.

Whenever the net force on an object is zero, the object is said to be in mechanical

- 15. Express the equilibrium rule mathematically, and explain what the symbol in the rule means.
 ∑*F* = 0; the symbol ∑ means "the sum of."
- **16.** Circle the letter that describes the forces acting on a suspended object at rest.
 - a. The forces acting upward on the object are greater than the forces acting downward on the object.
 - b. The forces acting upward on the object are less than the forces acting downward on the object.
 - c. The forces acting upward and downward on the object are balanced.
 - d. No forces are acting on the object.

2.3 Support Force (page 17)

- **17.** Identify the two forces acting on a book at rest on a table. State the direction of each force.
 - a. The weight of the book due to gravity acts downward.
 - b. The support force provided by the table acts upward on the book.
- **18.** The <u>support</u> force is the upward force that balances the weight of an object on a surface. Another name for this force is the <u>normal</u> force.

19. Look at the drawing above. Explain how the force of the table pushing up on the book is similar to what happens when the spring is compressed.

When the spring is compressed, it pushes upward on your hand. Similarly, the book

sitting on the table compresses the atoms of the table. The atoms then push upward on the book.

Chapter 2 Mechanical Equilibrium

20. Circle the letter that describes an object at rest on a horizontal surface.

- (a.) The support force is equal to the object's weight.
- b. The support force is greater than the object's weight.
- c. The support force is less than the object's weight.

2.4 Equilibrium for Moving Objects (pages 18-19)

- **21.** If an object is moving at a <u>constant</u> speed in a <u>straight-line</u> path, it is in a state of equilibrium.
- **22.** Is the following sentence true or false? If a desk is pushed at a constant speed across a horizontal floor, the force of friction must be equal in magnitude and opposite in direction to the pushing force on the desk. <u>True</u>
- **23.** Objects at rest are said to be in ______ equilibrium.

2.5 Vectors (pages 19-22)

- **26.** Now suppose the same gymnast hangs from two vertical ropes. What are the tensions in the ropes? _______ **150 N in each rope**
- 27. Define resultant. _____ the sum of two or more vectors
- **28.** State the parallelogram rule. To find the resultant of two vectors, construct a parallelogram wherein the two vectors

are adjacent sides. The diagonal of the parallelogram shows the resultant.

29. The gymnast shown below is suspended from two non-vertical ropes. The solid vector represents the gymnast's weight. What does the dashed vector represent? <u>the resultant of the tensions in both ropes</u>

© Pearson Education, Inc., or its affiliate(s). All rights reserved.

Chapter 3 Newton's First Law of Motion—Inertia

Exercises

3.1 Aristotle on Motion (pages 29-30)

Fill in the blanks with the correct terms.

- 1. Aristotle divided motion into two types: <u>______atural motion</u> and <u>______</u>
- 3. Aristotle thought that it was natural for heavy things to _________ and for light things to _________ rise
- Aristotle also thought that <u>circular</u> motion was natural for objects beyond Earth and that the planets and stars moved in perfect circles around <u>Earth</u>.
- 5. What force was thought to have caused a horse and cart to experience violent motion? <u>the pull of the horse</u>
- Before the 1500s, the proper state of objects was thought to be one of _________, unless they were being pushed or pulled or were moving toward their natural resting place.
- 7. Is the following statement true or false? Early thinkers thought that violent motion was imposed motion. <u>true</u>
- 8. Is the following statement true or false? It was commonly thought by many ancient thinkers that if an object moved "against its nature," then a force of some kind was responsible. <u>true</u>

3.2 Copernicus and the Moving Earth (page 30)

Determine if each of the following statements is true or false.

- true 9. Copernicus thought that Earth and other planets move around the sun.
- false 10. Copernicus thought that Earth was at the center of the universe.
- true 11. Copernicus did not publish his ideas until he was near death.
- false 12. Copernicus lived a long and happy life after his works were published.
- **13.** Why did Copernicus do most of his work in secret? Copernicus' ideas were very controversial, so he worked in secret to avoid persecution.

3.3 Galileo on Motion (pages 30-32)

- **14.** What was one of Galileo's great contributions to physics? demolishing the notion that a force is necessary to keep an object moving
- **15.** A force is any ______ or _____ pull

Chapter 3 Newton's First Law of Motion—Inertia

16. Explain what friction is and how it acts.

Friction is the force that acts between materials that touch as they move past each other. Friction is caused by irregularities in the surfaces that are touching. All irregularities obstruct motion causing a force (friction) that opposes motion.

17. In the drawings below, describe each type of slope on the top line. On the bottom line, describe the slope's affect on speed.

- **18.** Based on his experiments with rolling balls, Galileo was able to conclude that when friction is present, a <u>force</u> is needed to keep an object moving.
- 19. Describe the property of inertia in your own words.
 A body in motion will stay in motion unless acted on by a force. Likewise, a body at rest
 will stay at rest unless acted on by a force. Or, every object resists change to its state of
 motion.

3.4 Newton's Law of Inertia (pages 33-35)

- **20.** What is another name for Newton's first law of motion? the law of inertia
- 21. State Newton's first law of motion. Newton's first law states that every object continues in a state of rest, or of uniform speed in a straight line, unless it is acted on by a nonzero net force.
- 22. Use Newton's first law of motion to explain what happens to dishes on a table when the tablecloth is quickly pulled from beneath them. Dishes on a tabletop are at rest. They tend to remain at rest even when the tablecloth is pulled from beneath them because friction between the dishes and the tablecloth is not significant enough to move the dishes very much.
- **23.** Objects in a state of rest tend to remain at rest; only a _______ force will change that state.
- 24. Use Newton's first law of motion to explain why an air hockey puck slides on the game table with no apparent loss in speed. Name two things that can cause the puck to change its state of motion. In the absence of forces, a moving object such as the air hockey puck will move indefinitely in a straight line. The puck will change its motion if it is struck or if it hits the

side of the playing table.

25. Once an object is moving in a force-free environment, for how long will it move in a straight line? <u>indefinitely</u>

Name	Class	Date

Chapter 3 Newton's First Law of Motion—Inertia

3.5 Mass—A Measure of Inertia (pages 36-38)

26. Circle the letter of each sentence that is true about the mass of an object.

- (a.) The amount of inertia an object has depends on its mass.
- (b) The more mass an object has, the greater its inertia.
- c. Volume and mass are the same quantity.
- d.) Mass is usually measured in kilograms.
- **27.** Which item below has more mass? Which has more volume? Which has the greater inertia?

The battery has greater mass and thus greater inertia. The pillow has greater volume.

- **28.** Is the following sentence true or false? Mass is a measure of the gravitational force acting on an object. ______
- **29.** <u>Mass</u> is a measure of the amount of material in an object and depends on the number of and kind of atoms that compose it.
- **30.** Is the following sentence true or false? A stone has the same mass on Earth and on the moon, but its weight is less on the moon.
- **31.** <u>Mass</u> is the quantity of matter in an object.
- **32.** <u>Weight</u> is the force of gravity on an object.

Match each phrase with the correct word.

Phr	Phrase		
<u>c</u> 33.	traditional unit of weight in the United States	a. kilogram b. mass	
b 34.	measure of matter in most parts of the world	c. pound d newton	
<u>a</u> 35.	SI unit of mass	a. new ton	

<u>d</u> **36.** SI unit of force

3.6 The Moving Earth Again (pages 38–39)

37. If Earth is rotating at 30 km/s, explain how a bird sitting on a tree can drop down vertically and grab a worm that is crawling on the ground. Earth, the bird, the tree, the ground, and the worm are all rotating as one unit. Because

everything is rotating as one unit, Earth's rotation does not affect the bird's ability to

descend vertically to grab the worm.

Chapter 3 Newton's First Law of Motion—Inertia

- **38.** A girl is sitting on a bus that is traveling at 30 km/h. She is throwing her tennis ball gently into the air and catching it. Circle the letter of each true statement.
 - a. The tennis ball is moving faster than the girl riding on the bus.
 - (b) The tennis ball is behaving as if the bus were at rest.
 - c. The inertia of the tennis ball changes when it is thrown.
 - d. Gravity affects only the vertical motion of the tennis ball.

Match the ideas on motion with the correct scientist.

	Idea	Scientist
а	39. did not recognize inertia	a. Aristotle
b	40. developed the law of inertia	b. Newton
а	41. believed that horizontal motion was "unnatural"	c. Galileo
С	42. was one of the first to recognize that no force was needed to keep an object in motion	