
Honors Data Structures & Algorithms: Summer Assignment 

Part A: Understanding The N-Body Problem 
 
  

The goal of the summer assignment is to: 

 Establish (or Reestablish) your Eclipse programming environment on your home computer 

 Become familiar with the “Standard” libraries which are employed in the our textbook, 
Introduction To Programming in Java, by Robert Sedgewick and Kevin Wayne 

 Learn some physics, which you may be currently studying or may have studied last year 

 Write about 70 lines of Java code to solve a problem which the world’s foremost 
mathematicians and physicists, including Isaac Newton, were unable to solve for 300 years. 

 
In 1687 Sir Isaac Newton formulated the principles governing the motion of two particles under 
the influence of their mutual gravitational attraction (aka the “Two-body Problem” ) in his famous 
book, the Principia.  Common examples of the two body problem include a satellite orbiting a 
planet, a planet orbiting a star, two stars orbiting each other (a binary star), and a classical 
electron orbiting an atomic nucleus.  However, Newton was unable to solve the problem for three 
particles (aka the “Three-body Problem” ) or more particles (aka the “N-body Problem” ). In 
general, solutions to systems of three or more particles cannot be solved analytically.  In other 
words, these problems cannot be solved with the rules of algebra, trigonometry, geometry and 
calculus.  Instead, they can only be solved numerically.   
 
Your challenge is to write a program to simulate the motion of N particles in the plane, mutually 
affected by gravitational forces, and animate the results. Such methods are widely used in 
cosmology, semiconductors, and fluid dynamics to study complex physical systems. Scientists also 
apply the same techniques to other pairwise interactions including Coulombic (force of static 
electricity), Biot-Savart (the magnetic force produced by flowing electricity), and van der Waals 
(intermolecular forces). 
 
There are some really cool solutions to the N-body problem in which the bodies assume a stable 
period motion forever.  These are called N-body choreographies.  Here are a few great animations 
of N-body choreographies: 

 http://www.maths.manchester.ac.uk/~jm/Choreographies/  

 http://www.princeton.edu/~rvdb/WebGL/nBody.html  

 http://neutraldrifts.blogspot.co.uk/2011/02/youtube-videos-of-n-body-
choreographies.html  

 
This assignment is based on the N-Body Case Study of Introduction To Programming in Java, by 
Robert Sedgewick and Kevin Wayne as well as course material from their COS 126 course. 
 
 
  

http://introcs.cs.princeton.edu/java/home/
https://en.wikipedia.org/wiki/Robert_Sedgewick_(computer_scientist)
https://www.cs.princeton.edu/~wayne/contact/
https://en.wikipedia.org/wiki/Two-body_problem
https://en.wikipedia.org/wiki/Three-body_problem
https://en.wikipedia.org/wiki/N-body_problem
https://en.wikipedia.org/wiki/N-body_choreography
http://www.maths.manchester.ac.uk/~jm/Choreographies/
http://www.princeton.edu/~rvdb/WebGL/nBody.html
http://neutraldrifts.blogspot.co.uk/2011/02/youtube-videos-of-n-body-choreographies.html
http://neutraldrifts.blogspot.co.uk/2011/02/youtube-videos-of-n-body-choreographies.html
http://introcs.cs.princeton.edu/java/home/
https://en.wikipedia.org/wiki/Robert_Sedgewick_(computer_scientist)
https://www.cs.princeton.edu/~wayne/contact/
http://www.cs.princeton.edu/courses/archive/spr15/cos126/syllabus.html


AP Computer Science Summer Assignment 
Part B: Establishing Your Eclipse Development Environment 

 
I. Establish your Java Development Environment and Write a “Hello World” Program 

(1) You should download the Java SE Development Kit at 

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 

Click “Accept License Agreement”, then download and install the version which is matches your 

computer.   Be sure to select the right version (32-bit or 64-bit (x64)) for your computer.  You most 

likely need the 64-bit version.  If your computer is old, you might need the 32-bit version. 

(2) Create a new folder on your computer called APCompSci 

(3) Inside your APCompSci folder create a new folder called MyCode  

(4) Download Eclipse IDE For Java Developers at http://www.eclipse.org/downloads/ to your 

APCompSci folder.  The download will be a zip (compressed) file.  Note that the download is free 

and you need not make a donation to download Eclipse.  After the download has completed right-

click on this zip file and select Extract All to extract the contents into a folder.   This may take a few 

minutes. After the extract is complete, if the folder has a weird name (like eclipse=java-luna-SR2-

win32-x86_64) , right-click on the folder and rename it to eclipse . After you have extract is 

complete, delete the zip file you had downloaded. 

(5) Navigate to APCompSci->eclipse->eclipse.  There is an application in this folder called eclipse and 

the icon for this file should look like this:  .  Right-click on this file and select Send to Desktop 

(create shortcut).   This will create a shortcut for eclipse on your desktop 

(6) Go you’re your Desktop and double-click on your newly created Eclipse icon to start Eclipse 

(7) Eclipse might take a little while to start/initialize.  After Eclipse has initialized, it will present a Select 

A Workspace dialog box.  Click on the Browse  button and navigate to your APCompSci->MyCode 

folder.  Check the checkbox for Use this as the default and do not ask again.  Then click OK.   

(8) A Welcome Window is displayed.  If you ever need to return to the Welcome window, select Help-

>Welcome 

(9) On the Welcome Window, select Tutorials, then select Create a Hello World Application. 

(10)  Follow the tutorial instructions and complete all parts of the tutorial. 

 

II. Configure Eclipse to make “smart” suggestions 
(1) In Eclipse, select Window->Preferences , then in the tree on the left, expand the tree to select Java-

>Editor->Content Assist->Advanced .  On the Advanced window, left-click on the Restore Defaults 

button, then left-click on the OK button. 

(2) In Eclipse, select Window->Preferences , then in the tree on the left, expand the tree to select Code 

Recommenders->Completions .  On the Intelligent Code Completion window, left-click on the Enable 

intelligent code completion checkbox, then left-click on the OK button. 

If you have any questions, email me at rwertz@veronaschools.org 

  

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.eclipse.org/downloads/
mailto:rwertz@veronaschools.org


AP Computer Science Summer Assignment 
Part C: Solve the N-Body Problem 

 
I. Download the Standard Library Code 

(1) In your APCompSci folder, create a new folder called Jars   

Visit the following link to download and save the file stdlib.jar in your Jars folder.   

http://introcs.cs.princeton.edu/java/stdlib/stdlib.jar 

“Jar” stands for “Java archive” and a jar file is essentially a zip file of useful code.  The code in 

stdlib.jar will help us draw graphics, make sound and manipulate images.  Be sure to just download 

and save this file in your Jars folder and do not try to open it. 

 

II. Set up your Java project and download input files used to test your program 
1) In Eclipse, create a new Java Project (File->New->Java Project) and name the project NBody 

2) Download the zip file nbody.zip . View the directory that you downloaded the zip file to. Right-click 

on the zip file and "Extract All..." which will ask you to choose the extraction location. (Don't double 

click the zip file, since it browses the contents but does not extract them.) A new subdirectory 

nbody will be created at the extraction location, with the files inside of it.  Control-A to select all 

files in the directory, then Control-C to copy them.  In the Package Explorer of Eclipse, click on the 

NBody project (not the source folder, but the top-level folder in the project), and Control-V to paste 

them.  If you are prompted with a “File Operation’ dialog box, select “Copy Files” and click OK. 

3) In the Package Explorer window of Eclipse, right-click on the Folder for the NBody project and select 

Build Path->Add External Archives . Then navigate to the stdlib.jar you downloaded in your Jars 

folder and select it.  This step effectively imports some important code that will help us use the 

graphics and other capabilities of the computer. 

4) In the Package Explorer window of Eclipse, right-click on the Folder for the NBody project and select 

New->Class. Then name the new class NBody.  An empty class will appear in the editor window of 

Eclipse.   

 
III. Understand the Program Specification 

The program specification outlines your programs inputs, outputs, and what exactly your 

program is supposed to do: 

 Your program (class file) will be called NBody.java 

Your program will: 

 Prompt the user for two double values, 𝑇 and ∆𝑡 

o 𝑇 represents the total time of the simulation in years 

o ∆𝑡 represents the amount of time between two iterations of your simulation 

 Reads in the “universe” of bodies from a file using the In class, using parallel arrays to 

store the data 

o To connect an In object which reads a file, use the following code: 

File f = new File("planets.txt"); 

http://introcs.cs.princeton.edu/java/stdlib/stdlib.jar
ftp://ftp.cs.princeton.edu/pub/cs126/nbody.zip


In fInput = new In(f); 

o You’ll declare and initialize six 1-D arrays to store: 

 𝑥 coordindate of the position of the body, in meters 

 𝑦 coordindate of the position of the body, in meters 

 Horizontal (𝑥 axis) velocity of the of the body, in meters per second 

 Vertical (𝑦 axis) velocity of the of the body, in meters per second 

 Mass of the body, in kilograms 

 Filename of the image used to draw the body (e.g. “earth.gif”) 

 Simulates the universe, starting at time t = 0.0, and continuing as long as t < T, 

using the “leapfrog” scheme described below 

 Animates the results using the StdDraw class 

 Prints the state of the universe at the end of the simulation (in the same format as the 

input file) to standard output (the console) using the StdOut class. 

 

IV. Understand the “Universe” input file format 

The input format is a text file that contains the information for a particular universe (in SI units). The 

first value is an integer N which represents the number of particles in the universe. The second value is 

a real number R which represents the radius of the universe, which is used to determine the scaling of 

the drawing window. Finally, there are N rows, and each row contains 6 values. The first two values are 

the x- and y-coordinates of the initial position; the next pair of values are the x- and y-components of 

the initial velocity; the fifth value is the mass; the last value is a String that is the name of an image file 

used to display the particle. As an example, planets.txt contains data for our own solar system (up to 

Mars): 

Here are the contents of an example input file, planets.txt 

5 

2.50e+11 

 1.4960e+11  0.0000e+00  0.0000e+00  2.9800e+04  5.9740e+24    earth.gif 

 2.2790e+11  0.0000e+00  0.0000e+00  2.4100e+04  6.4190e+23     mars.gif 

 5.7900e+10  0.0000e+00  0.0000e+00  4.7900e+04  3.3020e+23  mercury.gif 

 0.0000e+00  0.0000e+00  0.0000e+00  0.0000e+00  1.9890e+30      sun.gif 

 1.0820e+11  0.0000e+00  0.0000e+00  3.5000e+04  4.8690e+24    venus.gif 

 

V. Understand the physics 

Here we review the equations governing the motion of the particles, according to Newton's laws of 

motion and gravitation. Don't worry if you haven’t yet learned physics or if your physics is a bit rusty; all 

of the necessary formulas are included below. We'll assume for now that the position (𝑝𝑥 , 𝑝𝑦) and 

velocity (𝑣𝑥 , 𝑣𝑦) of each particle of each particle is known. In order to model the dynamics of the 

system, we must know the net force exerted on each particle, in other words, in which direction and 

how strongly is the particle being “pulled” by the other particles. 

 Compute the “pairwise force” between each unique pair of particles: 



Newton's law of universal gravitation asserts that the strength of the gravitational force 

between two particles is given by the product of their masses divided by the square of the 

distance between them, scaled by the gravitational constant 𝐺(6.67 ×  10−11  
𝑚3

𝑘𝑔∙𝑠2).  

𝐹 =
𝐺𝑚1𝑚2

𝑟2
 

The pull of one particle towards another acts on the line between them.  Since we are using 

Cartesian coordinates to represent the position of a particle, it is convenient to break up the 

force into its x- and y-components (𝐹𝑥 , 𝐹𝑦) as illustrated below. 

 

You should store the pairwise forces in a 2-D array, where the row index represents the index 

of the “from” body and the column index represents the index of the “to” body.  Note that the 

diagonal elements of this 2-D array should be infinite, as the distance 𝑟 between a particle and 

itself is zero. 

 Compute the net force acting on each particle: 

The principle of superposition says that the net force acting on a particle in the x- or y-direction 

is the sum of the pairwise forces acting on the particle in that direction. So to get the 𝑥 

component of the net force on particle 𝑖, you need to sum the pairwise forces between particle 

𝑖 and all other particles (but not itself). 

 Compute the acceleration of each particle: 

Newton's second law of motion postulates that the accelerations in the x- and y-directions are 

given by: 

𝑎𝑥 =
𝐹𝑥

𝑚
 

𝑎𝑦 =
𝐹𝑦

𝑚
 

Store the 𝑥 components of the acceleration of all particles in a 1-D array.  Do the same for the 𝑦 

components of the acceleration. 

 

VI. Simulate the universe 

We use the numerical approximation of the “true” solution, called the “leapfrog finite difference 

approximation” to numerically integrate the above equations: this is the basis for most astrophysical 

simulations of gravitational systems. In the leapfrog scheme, we discretize time, and update the time 

variable 𝑡  in increments of the time quantum ∆𝑡 (measured in seconds). We maintain the position 

(𝑝𝑥 , 𝑝𝑦) and velocity (𝑣𝑥, 𝑣𝑦) of each particle at each time step. In other words, the main loop of our 



program has 𝑡 as its loop variable and 𝑡 is incremented by ∆𝑡  each time we go through the loop.  The 

steps below illustrate how to evolve the positions and velocities of the particles. 

 Step 1: For each particle: Calculate the net force (𝐹𝑥 , 𝐹𝑦) at the current time 𝑡 acting on 

that particle using Newton's law of gravitation and the principle of superposition as 

described in part IV. Note that force is a vector (i.e., it has direction). In particular, be 

aware that ∆𝑥 and ∆𝑦 are signed (positive or negative). In the diagram above, when 

you compute the force the sun exerts on the earth, the sun is pulling the earth up (∆𝑦 

positive) and to the right (∆𝑥 positive).   

 Step 2: For each particle: 

a) Calculate its acceleration (𝑎𝑥 , 𝑎𝑦) at time 𝑡 using the net force computed in Step 1 and 

Newton's second law of motion:   𝑎𝑥 =
𝐹𝑥

𝑚
 , 𝑎𝑦 =

𝐹𝑦

𝑚
 

b) Calculate its new velocity (𝑣𝑥 , 𝑣𝑦) at the next time step (𝑡 +  ∆𝑡) by using the 

acceleration computed in Step 2a and the velocity from the old time step (𝑡): Assuming 

the acceleration remains constant in this interval, the new velocity is (𝑣𝑥 + 𝑎𝑥 ∙

∆𝑡, 𝑣𝑦 + 𝑎𝑦 ∙ ∆𝑡)  

c) Calculate its new position (𝑝𝑥 , 𝑝𝑦) at the next time step (𝑡 + ∆𝑡) by using the velocity 

computed in Step 2b and its old position at time t: Assuming the velocity remains 

constant in this interval, the new position is (𝑝𝑥 + 𝑣𝑥 ∙ ∆𝑡, 𝑝𝑦 + 𝑣𝑦 ∙ ∆𝑡)  

 Step 3: For each particle, draw the particle on the canvas using the position computed 

in Step 2.  Draw each particle at its current position using the StdDraw class, and repeat 

this process at each time step until a designated stopping time. By displaying this 

sequence of snapshots (or frames) in rapid succession, you will create the illusion of 

movement. After each time step (i) draw the background image starfield.jpg, (ii) redraw 

all the bodies in their new positions, and (iii) control the animation speed (about 40 

frames per second looks good). You will use several methods from the StdDraw library; 

click here to see the API for this library 

 

Note that this simulation is more accurate when ∆𝑡 is very small, but this comes at the price of 

more computation.   

 

VII. Output the final state of your universe: After the animation stops, your program should 

output the final state of the universe in the same format as the input, e.g.: 
5 

2.50e11 

 1.4925e+11 -1.0467e+10  2.0872e+03  2.9723e+04  5.9740e+24    earth.gif 

-1.1055e+11 -1.9868e+11  2.1060e+04 -1.1827e+04  6.4190e+23     mars.gif 

-1.1708e+10 -5.7384e+10  4.6276e+04 -9.9541e+03  3.3020e+23  mercury.gif 

 2.1709e+05  3.0029e+07  4.5087e-02  5.1823e-02  1.9890e+30      sun.gif 

 6.9283e+10  8.2658e+10 -2.6894e+04  2.2585e+04  4.8690e+24    venus.gif 

VIII. Backup Up Your Work 

(1) Copy your MyCode folder to a USB Flash Drive so that you can bring it to school 

http://introcs.cs.princeton.edu/java/15inout/javadoc/StdDraw.html

