

Electricity Review

- Two types of electric charge:
- Positive
- Negative

Opposites attract and likes repel

Electricity Review

- All matter is made up of protons, neutrons, and electrons.
 - Protons + charge
 - Neutrons 0 charge
 - Electrons charge
- Electricity is caused by moving electric charges, specifically electrons.

Electron Freedom

<u>Conductors</u>: electrons are free to move

- Silver
- Gold
- Iron
- Steel
- The Human Body

Insulators: electrons are not free to move

- Glass
- Plastic
- Wood
- Rubber
- Fiberglass

Static Electricity

Electric charge imbalance on the surface of an object.

Common Occurrences:

- Getting out of your car
- Walking along carpet

Polarization

A surface charge can be induced (caused or created) on an *insulator*

Hair comb picking up paper

Induction

<u>Conductors</u> can be given a charge by letting excess electrons move from one object to another

Grounding: A conducting material that is attached to Earth by another conducting material is *grounded*.

Induction

- Excess electrons can be provided by or removed by Earth
- Charge will flow from one conductor to another until electrical equilibrium is established or connection is broken.

Electric Forces

Unit of Charge: C (Coulomb) Coulomb's Law $F_e = k \frac{q_1 q_2}{r_1^2}$ This equation is to be used for MAGNITUDE

- k=9x10⁹ N m²/C²
- q: electric charge

Comparing F_E and F_g $F_e = k \frac{q_1 q_2}{r^2}$ $F_g = G \frac{m_1 m_2}{r^2}$

<u>k & G</u>: constants (will be given) <u>q & m</u>: How much stuff is there to exert a force q can be negative but m can't r & r: No difference between r's

Comparing F_E and F_g $F_e = k \frac{q_1 q_2}{r^2}$ and $F_g = G \frac{m_1 m_2}{r^2}$

Both forces have the same general form and are used the same way. Let us compare relative strengths of these two forces. Which is holding matter together, F_E or F_q ?

Comparing F_E and F_g

 $r = 5.3 \times 10^{-11}$

Example 1: 2 Charges, 1 Dimension

What is the force from q_1 on q_2 ?

 F_e = 2.16N in the positive x-direction or F_e = 2.16i + 0j

Example 2: 2 Charges, 1 Dimension

What is the force from q_1 on q_2 ?

 F_e = 1.51N in the negative x-direction or F_e = -1.51i + 0j

How to Solve

- 1. Determine the magnitude and direction of $F_{1,3}$ and $F_{2,3}$.
- 2. Convert to **i j** notation.
- 3. Add the components of each force
- 4. Determine the magnitude and direction of net force, F_{net} .

Example 3: 3 Charges, 2 Dimensions

What is the force on q_3 from q_1 and q_2 ?

 $F_{net} = 56.27 \text{ N} @ 5.02^{\circ}$ above negative x-axis

Example 4: 3 Charges, 2 Dimensions

What is the force on q_3 from q_1 and q_2 ?

F_{net} = 95.45 N @ 15.65° below negative x-axis

Example 5: Electrical Equilibrium

At what distance from q_1 will q_2 be at equilibrium?

Example 6: Electrical Equilibrium

At what distance from q_2 will q_3 be at equilibrium?

Electric Fields

What is the force on q_2 from q_1 in each of the following examples?

•
$$q_1=2$$
 C, $q_2=2$ C, $r=0.5m$
• $q_1=2^{\mu}C$, $q_2=4^{\mu}C$, $r=0.5m$
• $q_1=2^{\mu}C$, $q_2=6^{\mu}C$, $r=0.5m$ O_{q_1} O_{q_2}

Electric Fields

- Notice that in every force equation there was something that was exactly the same in each example.
- $\frac{kq_1}{r^2}$ is the same in every equation!
- This is known as the electric field produced by q₁.

Electric Fields

• A charged particle interacts with the electric field of another charged particle to produce electric forces

•
$$E_1 = \frac{kq_1}{r^2} \Rightarrow E_1q_2 = \frac{kq_1q_2}{r^2} = F_{1,2}$$
 $E_1q_2 = F_{1,2}$

• Electric fields are also vectors but just like forces, this equation is meant for magnitude.

Test Charge

- When working with Magnetic fields we often use a "test charge" to help with direction.
- Test charges are always positive and exist ONLY to show what direction a field will push/pull a positive charge.
- Test charges being positive is a convention so that all physicists agree on how electric fields behave

Example 7: Electric Field of 2 Charges

What is the magnitude and direction of the q_1 magnetic field a distance of 4m to the 3m right of q₂? Test Charge $(q_1=10 C, q_2=5 C)$ \mathbf{q}_2 μ μ

Electric Field Visualization

- The electric field of a charge = invisible hands that want to smack other electric charges around
- $E = k \frac{Q}{r^2}$ states that the invisible hands are

weaker farther away from the charge.

Electric Field Vectors

- So what do physicists use to represent these invisible hands?
- Little arrows called VECTORS! :D

Electric Field Lines

• Instead of leaving an image of a bunch of little arrows, physicists connect the dots to form *Electric Field Lines*.

Physicists remember farther away = weaker

Positive and Negative Charges

Positive-Positive

Negative-Negative

Positive-Negative

General Rules about Field Lines

- Field lines NEVER intersect!
- Field lines BEGIN on (point away from) positive charges
- Field lines END on (point toward) Negative charges

Force Fields? No. Forces AND Fields

- Non-contact forces can be described using the concept of a *field*.
- A field is produced by charge Q is defined as $E = k \frac{Q}{r^2}$ or $E = \frac{F}{q}$ where q is the charge

that would experience an electric force from Q.

Visualizing Electric Fields

- What direction does a test charge get "pushed/pulled" by a positive charge?
- What direction does a test charge get "pushed/pulled" by a negative charge?
- Draw arrows in the direction of the force that would be experienced if there were a charge there.

Calculating Electric Fields

What is the magnitude of the electric field at the center of this rectangular arrangement?

